Heat – Transfer of Heat : Illustrations to Answers of Objective and Subjective Questions (Typical)

	-
I-01	Rate of conduction of heat is $u = \frac{\Delta Q}{\Delta t} = \frac{kA\Delta\theta}{l} \Rightarrow k = \frac{ul}{A\Delta\theta}$, here k is the thermal conductivity which is
	characteristic to the material of the rod, while A and l are depending on geometry of the rod and $\Delta \theta$ is thermal operating condition which decide conduction of heat u from a specific material. Hence answer is
	(d).
I-02	 Each of the given options is being analyzed. (a) Transfer of heat from one place to the other can take place through conduction, if there is any object connecting source of heat and object at other place which makes option (a) to be correct. (b) In presence of air in the room convection process will transfer heat and this makes option (b) to be correct. (c) When two objects are at a distance transfer of heat by radiation will take place as it is independent of medium. This makes option (c) to be correct. (d) Since all the three modes of heat transfer are equally valid hence answer is (d).
I-03	Given that an object at temperature T_1 is placed in chamber at temperature T_2 such that $T_2 > T_1$. Therefore transfer of heat will be there from higher to lower temperature to lower temperature i.e. from room to the object. Since chamber is evacuated the mode of transfer of heat would be radiation. Accordingly as per
	Newton's Law of cooling $\Delta u = e\sigma A (T_2^4 - T_1^4)$, here <i>e</i> is emissivity of surface of the object, σ is absorptive
	power of the body as per Kirchhoff's Law and A is surface area of the object which depends upon its
	geometry. Thus all the three factors are constants. Accordingly, $\Delta u \propto (T_2^4 - T_1^4)$. Thus answer is option
	(d).
I-04	As per Stefan and Boltzmann's Law rate of radiation $\Delta u = e\sigma AT^4 \Rightarrow \Delta u \propto T^4$, here <i>e</i> is emissivity of surface of the object, σ is absorptive power of the body as per Kirchhoff's Law and A is surface area of the object which depends upon its geometry. Since. These constants take care of geometry and properties of
	surface. Hence, the given statement $\Delta u \propto T^n \Big _{n=4}$ applies to all bodies. Thus option (b) is correct.
I-05	As per As per Stefan and Boltzmann's Law rate of radiation is $\Delta u = e\sigma AT^4 \Rightarrow \frac{\Delta u_2}{\Delta u_1} = \frac{T_2^4}{T_1^4}$. Accordingly the
	ratio is $=\left(\frac{T_2}{T_1}\right)^4 = \left(\frac{273+20}{273+10}\right)^4 = (1.04)^4 = 1.15 \Rightarrow u_1: u_2::1:1.15$. It is to essential to remember that in
	this law temperature are on Thermodynamic scale. Hence answer is option (a). N.B.: Difference in values given in the options is discretely large and without actually calculating a
	mathematical judgment can be made that $(1.04)^4 = 1.15$, and accordingly question can be answered.
I-06	A metal rod with one end in the furnace shall experience transfer of heat by conduction as per
	$u = \frac{\Delta Q}{\Delta t} = \frac{kA\Delta\theta}{l} \Rightarrow k = \frac{ul}{A\Delta\theta}$, convection through ambient air and radiation at every point of the rod
	depending upon its temperature. Thus possible answers are (a) and (c).
	Now, between options (b) and (d), decrease of temperature cannot be stated with certainty as temperature of

	the other end of the rod and other parameters of conduction are not defined. In case the length of the rod protruded outside furnace is at ambient temperature then option (b) is valid. But, if temperature of rod at other end is above ambient temperature then initially temperature of the rod would initially decrease and then again increase to attain temperature being maintained at the other end. This condition is satisfied in option (d). Hence answer is (d).
I-07	Newton's Law of cooling is about rate of cooling of an object due to radiation at a known ambient
	temperature when temperature of the heat radiating body T is above ambient temperature T_0 through a small
	value i.e. $T - T_0 <$ and is expressed as $\frac{dT}{dt} = -bA(T - T_0)$. Accordingly each of the option is being
	analyzed. (a) The Wien's Displacement Law states maximum frequency of radiation by a and object at a given
	temperature and is expressed as $\lambda_m T = b$, thus it is not about rate of cooling and hence option (a) is
	incorrect.(b) Kirchhoff's Law is about ratio of emissive power to absorption power of any body is equal to emissive
	power of black body at that temperature and is expressed as $\frac{E(body)_T}{a(body)_T} = E(blackbody)_T$. This is also
	not related to rate of cooling and hence option (b) is incorrect.
	(c) Stefan's Law states rate of emission of energy as $u = e\sigma AT^4$. Thus if the object A is at a temperature
	T kept in a ambient at a temperature T_0 . Thus net rate of transfer $\Delta u_r = u_e - u_a = e\sigma AT^4 - e\sigma AT_a^4$.
	It leads to $\Delta u_r = e\sigma A (T^4 - T_a^4) = e\sigma A ((T_a + \Delta T)^4 - T_a^4)$. This resolves into
	$\Delta u_r = e\sigma A T_a^4 \left(\left(1 + 4\frac{\Delta T}{T} + \text{higher powers of } \frac{\Delta T}{T} \right) - 1 \right), \text{ since } \frac{\Delta T}{T}, \text{ here } \Delta T = T - T_a \text{ is small}$
	accordingly it simplifies to $\Delta u_r = 4e\sigma AT^4 \frac{\Delta T}{T} = 4e\sigma AT^3 \Delta T = b_1 A \Delta T$.
	Another source of dissipation of heat is convection and its of dissipation is approximated to $\Delta u_c = b_2 A \Delta T$. Thus total loss of heat is $\Delta u = \Delta u_1 + \Delta u_2 = b_1 A \Delta T + b_2 A \Delta T = (b_1 + b_2) A \Delta T$ (1).
	Further, from heat capacity $\Delta Q = ms\Delta\theta \Rightarrow \Delta u = \frac{\Delta Q}{\Delta t} = ms\frac{\Delta\theta}{\Delta t}$ (2). Combining equations (1 & 2) we
	get $ms \frac{\Delta \theta}{\Delta t} = (b_1 + b_2)A(T - T_a) \Rightarrow \frac{d\theta}{dt} = \frac{(b_1 + b_2)A}{ms}(T - T_a) = b(T - T_a)$, here $b = \frac{(b_1 + b_2)A}{ms}$.
	Thus it is seen that this Stefan's Law is in close approximation to Newton's Law of cooling. Hence option (c) is correct.
	(d) Planck's Law states that energy contained in radiation is discrete and expressed as $E = nh\nu$, here ν is frequency of radiation, n is an integer and h is Planck's constant. Thus this law is far away from
	Thus correct answer is option (c).
I-08	In the given case rate of cooling i.e. fall of temperature can be determined from Newton's Law of Cooling
	(NLC) and accordingly, $\frac{dT}{dt} = -bA(T - T_0)$. In light of this each of the graph is being analyzed –
	• Graph(a) shows decrease in $\frac{dT}{dt}$ with fall in temperature and is approximated and hence this graph is the
	 answer. Graph (b) depicts constant rate of fall of temperature and is nut feasible as per NIC and hence this is
	incorrect.
	• Graph (c) shows slow rate of cooling at higher temperature and increase in rate of cooling with reduction

	 in temperature. This is not in accordance with NLC. Hence it is incorrect answer. Graph (d) shows no cooling at initial temperature and sudden cooling at infinite rate. This is not tenable with any of the laws of radiation. Hence it is incorrect answer.
	Thus correct answer is graph (a).
I-09	As per Newton's Law of Cooling $\frac{dT}{dt} = -bA(T - T_a) \Rightarrow \frac{dT}{T - T_a} = -bAdt$. On integration
	$\int \frac{dT}{T - T_a} = -\int bAdt \Rightarrow \ln(T - T_a) = -bAt + C$. This is a straight line with (-)ve slope and initial value at
	t = 0 depending upon initial difference in temperature. Thus, answer is option (a).
I-10	As per Newton's law of cooling $\frac{\Delta\theta}{\Delta t} = b(T - T_a)$, here coefficient $b = \frac{(b_1 + b_2)A}{ms}$ where $b_1 = 4e\sigma AT^3$
	and b_2 is arbitrary constant regulated by convection process while constituents of ms are parameters of the
	body. Thus occurrence of T^3 in the coefficient would reduce rate of cooling with fall of temperature from
	65° C to 60° C to 60° C to 55° C, despite $\Delta T = 65 - 60 = 60 - 55 = 5^{\circ}$ C=5K. Hence, answer is option (c). N.B.: Qualitatively the above analysis is correct. But quantitatively analysis would require to take in Kelvin scale. As regards the factor ΔT it is same both in Celsius and Kelvin, and hence would not influence results either quantitatively or qualitatively.
I-11	The process of heat transfer is defined by equation
	$\Delta Q = \frac{kA\Delta\theta}{l}\Delta t.$ At the start i.e. at time $t = 0^{-}$ the rod is in equilibrium with ambient temperature. As soon as the two ends dipped at different temperature, hear transfer takes starts as a transient process, which disturbs initial equilibrium until a new equilibrium is established with temperature of the two ends are as defined. In this context each of the option is being analyzed – Option (a): From the above initial equilibrium will move into in- equilibrium, due to transient conditions, until new equilibrium is established Thus this option is incorrect . Option (b): With ends of the rod at discretely different temperatures a temperature gradient would be established along the length of the rod due to heat transfer. Hence, specific temperature cannot be assigned to the rod. Thus this option is incorrect . Option (c): Taking forward the analysis at option (b) even after attaining specific temperature cannot be assigned to the rod. Thus this option is incorrect . Option (d): Once steady state is reached, by its nomenclature its state would continue to be so unless conditions of the rod are changed. Thus this option is correct . Hence answer is option (d) .
I-12	As per Kirchhoff's Law of radiation $\frac{E(body)_T}{a(body)_T} = E(blackbody)_T$. Thus black body simultaneously absorbs and radiates heat and therefor what it does not is both reflection and refraction of radiation. Hence answers is option (c) and (d).
I-13	In summer temperature water of a calm river remains lower than that of land because of greater mass and low specific heat as compared to the land at the shore i.e. $m_1s_1 = m_2s_2$ Therefore, for same radiation on on surface of sea and land temperature rose on land $\Delta \theta_{\text{land}} > \Delta \theta_{\text{sea}}$ and this will cause convection current in air with an upward drift. Thus a partial vacuum would be created on the surface of the land. In turn the denser air

	on the surface of the sea would tend to fill partial vacuum on lands surface, like convection current. <i>Thus cause of mild wind on the shore of a calm river is convection current</i> . Hence, answer is option (b) .
I-14	Surface of charcoal is like black body and therefore it will tend absorb Q_{a-c} all heat Q_i incident on it i.e.,
	$Q_{a-c} \approx Q_i$. As against this shinning steel piece will reflect Q_{r-s} major part of the heat incident on it Q_i i.e.
	$Q_{r-s} < Q_i$. In this context each option is being analyzed –
	Option (a): Therefore heat absorbed by steel rod $Q_{a-s} = Q_i - Q_{r-s}$. Thus $Q_{a-s} < Q_{a-c}$. This is in
	contradiction to the statement at (a). Hence, option (a) is incorrect.
	Option (b): In light of analysis in option (a) leading to $Q_{a-s} < Q_{a-c}$ at equilibrium state steel piece
	would be cooler than charcoal. This inference is in contradiction to the option (b). Hence, option (b) is
	Option (c): When both the charcoal and the steel pieces are picked up by bare hands transfer of heat
	between the pieces and hand surface would be by conduction. Therefore, $\frac{\Delta Q}{\Delta t} = \frac{kA\Delta\theta}{l} \Rightarrow \frac{\Delta Q}{\Delta t} \propto k\Delta\theta$.
	Since, steel is good conductor of heat as compared to the charcoal such that coefficients of conductivity
	are $k_a > k_a$. Therefore, rate of transfer of heat for steel would be more than that for charcoal. Since,
	sense of hotter or cooler on touch is caused by rate of transfer of heat. Accordingly, steel piece will be
	felt hotter than charcoal. Hence, option (c) is correct.
	Option (d): Blackbody as compared to shinning surface has higher emissivity. Therefore, when both pieces picked up from a hot state in the lawn and placed in cold chamber the rate of loss of heat of
	charcoal piece is faster than steel rod. Therefore, option (d) is correct.
	Thus answer is option (c) and (d).
I-15	$\frac{1}{1}$
1 10	Highest intensity of radiation vis-a-vis its wavelength as per wien's Displacement Law is $\lambda_m T = 0$ – Const.
	Therefore, $\lambda_{m-1}T_1 = \lambda_{m-2}T_2 \Longrightarrow \frac{T_2}{T_1} = \frac{\lambda_{m-1}}{\lambda_{m-2}} = \frac{\upsilon_{m-2}}{\upsilon_{m-1}}\Big _{\nu = \frac{c}{\lambda}} \Longrightarrow T \propto \upsilon$
	Option (a): From the proportionality $T \propto v$ when temperature is doubled, frequency of maximum intensity of radiation would also double. Thus option (a) is correct. Option (b): Analysis at option (a) is reverse of the statement at option (b). Hence option (b) is incorrect.
	Option (c): As per Stefan and Boltzmann Law $u = e\sigma AT^4 \Rightarrow \frac{u_2}{u_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{u_2}{u_1} = (2)^4 \Big _{T_2 = 2T_1} = 16$.
	This answer is supported by option (c) and hence Option (c) is correct. Option (d): In this option answer is given to be 8 which in contradiction to the answer already proved at (c). Hence this option is incorrect.
	Thus correct answer is option (a) and (c).
	N.B.: Stefan-Boltzmann Law specifies relationship between λ_m and I while in answer is asked on
	relationship between v_m and T . This requires conversion of the equation with the relationship $v = \frac{c}{\lambda}$.
I-16	As per Stefan and Boltzmann's Law $u = e\sigma AT^4$ Since the sphere and hollow sphere are of same material
	and radii therefore $(e\sigma A)_{\text{solid_sphere}} = (e\sigma A)_{\text{hollow_sphere}}$. Accordingly, both will emit equal radiation in the
	beginning as they are heated to same temperature. Thus option (a) is correct. With logic discussed above rate of absorption of heat from surrounding will also be the same. Thus option (b) is also correct.
	$\Delta Q = ms \Delta T \implies u = \Delta Q = ms \Delta T \implies \Delta T = u$
	Considering the heat capacity $\Delta Q = m_{S\Delta I} \rightarrow u = \frac{1}{\Delta t} - \frac{1}{\Delta t} \rightarrow \frac{1}{\Delta t} - \frac{1}{m_{S}}$. Since material of solid
	sphere and hollow sphere are same their specific heat capacities $s_{s-s} - s_{h-s}$ but $m_{s-s} - m_{h-s}$. Accordingly,

	$s_{s-s} \cdot m_{s-s} > s_{h-s} \cdot m_{h-s} \Rightarrow (ms)_{s-s} \neq (ms)_{h-s}$. Therefore, using the above derivations
	$\left \frac{\left(\frac{dT}{dT}\right)_{s-s}}{\left(\frac{dT}{dT}\right)_{h-s}} = \frac{\frac{u}{\left(ms\right)_{s-s}}}{\frac{u}{\left(ms\right)_{h-s}}} = \frac{\left(ms\right)_{h-s}}{\left(ms\right)_{s-s}}. \text{ And hence } \left(\frac{dT}{dT}\right)_{s-s} \neq \left(\frac{dT}{dT}\right)_{h-s}. Thus ionitial rate of colling will not be same and contradicts option (c). Thus option (c) is incorrect. The two spheres at equal initial temperature have different rate of cooling and hence at every instant, after the$
	initial, they will have different temperature. This is in contradiction to statement in option (d). Thus option (d) is incorrect. Thus answer is option (a) and (b).
I-17	With the given orientation of the slab $A = 0.1 \times 0.1 = 0.01 \text{ m}^2$ and $l = 0.01 \text{ m}$. Further, temperature difference
	between reservoirs is $\Delta T = 90 - 10 = 80^{\circ}$ C. From conduction of heat $\frac{\Delta Q}{\Delta t} = \frac{kA\Delta T}{l}$. Using the given data
	$\frac{\Delta Q}{\Delta t} = \frac{0.8 \times 0.01 \times 80}{0.01} = 64 \text{ J.s}^{-1}.$ Since answer asked is heat flowing in one minute
	$H = \frac{\Delta Q}{\Delta t} \times 60 = 64 \times 60 = 3840 \text{ J. Hence ans wer is } 3840 \text{ J.}$
I-18	Given that $k = 0.025 \text{ J.s}^{-1} \text{.m}^{-1} \text{.}^{0} \text{C}^{-1}$, thickness of heat insulator $l = 0.1 \text{ m}$, area of the heat insulator is $A = 0.80 \text{ m}^{2}$. And temperature difference liquid-nitrogen and atmosphere is $\Delta T = 300 - 80 = 220 \text{ K}$
	=220 ^o C. Since atmosphere is at higher temperature and hence rate heat flowing into liquid nitrogen is $\Delta Q = k \Delta A T = 0.025 \times 0.80 \times 220$
	$\frac{\Delta g}{\Delta t} = \frac{M M}{l} = \frac{0.025 \times 0.00 \times 220}{0.01} = 440 \text{ W. Hence, ans wer is 440 W.}$ N.B.: Unit of heat energy is Joule, but rate of flow of heat is power i.e. J.s ⁻¹ which is equivalent to Watt
I-19	We know that $F^{-32} = C \rightarrow C = \frac{5}{(F - 22)}$, therefore $\Delta C = C = -C = \frac{5}{2}(F - F) = \frac{5}{2}(97 - 47) = \frac{250}{2}$.
	9 5 9 9 9 9 9 9 9 9
	$\frac{1}{10000000000000000000000000000000000$
	of flow of heat from the body $\frac{\Delta Q}{\Delta t} = \frac{kA\Delta T}{l} = \frac{0.04 \times 1.0 \times 9}{0.5 \times 10^{-2}} = 3.56 \times 10^2 \text{ J.s}^{-1}$. Hence answer is 356 J.s ⁻¹
I-20	Rate of evaporation of water is $m = 100$ g per minute therefore amount of heat absorbed by water per-minute
	is $Q = m \times L = 0.100 \times 2.26 \times 10^6 = 2.26 \times 10^5 \text{ J.m}^{-1}$. It works out to $\frac{\Delta Q}{\Delta t} = \frac{2.26 \times 10^5}{60} = 3.77 \times 10^3 \text{ J.s}^{-1}$. Since
	the heat is transferred to the water through the bottom of the container having area $A = 25 \times 10^{-4} \text{ m}^2$ and
	$\Delta O = k \Delta T$
	thickness $l = 1 \times 10^{-2}$ m and thermal conductivity $k = 50$ W.m ⁻¹ . ⁰ C ⁻¹ . From conduction of heat $\frac{\Delta Q}{\Delta t} = \frac{\kappa A \Delta T}{l}$.
	thickness $l = 1 \times 10^{-2}$ m and thermal conductivity $k = 50$ W.m ^{-1.0} C ⁻¹ . From conduction of heat $\frac{\Delta Q}{\Delta t} = \frac{\kappa A \Delta T}{l}$. Substituting the values, it leads to $3.77 \times 10^3 = \frac{50 \times (25 \times 10^{-4}) \times \Delta T}{1 \times 10^{-3}} \Rightarrow \Delta T = \frac{3.77 \times 10^4}{50 \times 25} = 30.16$. Thus
	thickness $l = 1 \times 10^{-2}$ m and thermal conductivity $k = 50$ W.m ^{-1.0} C ⁻¹ . From conduction of heat $\frac{\Delta Q}{\Delta t} = \frac{KAXT}{l}$. Substituting the values, it leads to $3.77 \times 10^3 = \frac{50 \times (25 \times 10^{-4}) \times \Delta T}{1 \times 10^{-3}} \Rightarrow \Delta T = \frac{3.77 \times 10^4}{50 \times 25} = 30.16$. Thus temperature of th bottom of the vessel above boiling point of water is $T = 100 + \Delta T = 100 + 30.1 - 130.1^{\circ}$ C.
I-21	thickness $l = 1 \times 10^{-2}$ m and thermal conductivity $k = 50$ W.m ^{-1.0} C ⁻¹ . From conduction of heat $\frac{\Delta Q}{\Delta t} = \frac{kA\Delta T}{l}$. Substituting the values, it leads to $3.77 \times 10^3 = \frac{50 \times (25 \times 10^{-4}) \times \Delta T}{1 \times 10^{-3}} \Rightarrow \Delta T = \frac{3.77 \times 10^4}{50 \times 25} = 30.16$. Thus temperature of th bottom of the vessel above boiling point of water is $T = 100 + \Delta T = 100 + 30.1 - 130.1^{\circ}$ C. Accordingly, based SGs in the given data answer is $T = 130^{\circ}$ C.
I-21	thickness $l = 1 \times 10^{-2}$ m and thermal conductivity $k = 50$ W.m ^{-1.0} C ⁻¹ . From conduction of heat $\frac{\Delta Q}{\Delta t} = \frac{kA\Delta T}{l}$. Substituting the values, it leads to $3.77 \times 10^3 = \frac{50 \times (25 \times 10^{-4}) \times \Delta T}{1 \times 10^{-3}} \Rightarrow \Delta T = \frac{3.77 \times 10^4}{50 \times 25} = 30.16$. Thus temperature of th bottom of the vessel above boiling point of water is $T = 100 + \Delta T = 100 + 30.1 - 130.1^{\circ}$ C. Accordingly, based SGs in the given data answer is $T = 130^{\circ}$ C. conduction of heat $\frac{\Delta Q}{\Delta t} = \frac{kA\Delta T}{l}$. Thus from given data $\frac{\Delta Q}{\Delta t} = \frac{kA\Delta T}{l} = \frac{46 \times (0.04 \times 10^{-4}) \times (100 - 0)}{1} = 1.84 \times 10^{-2}$ Ls ⁻¹ Given the latent heat of fusion of ice the rate of melting of ice would be

	$\frac{\Delta Q}{\Delta t} = mL \Longrightarrow 1.84 \times 10^{-2} = m \times (3.36 \times 10^5) \Longrightarrow m = \frac{1.84}{3.36} \times 10^{-7} = 5.5 \times 10^{-8} \text{ kg} = 10^{-7} \text{ kg}$
	$5.5 \times 10^{-8} \times 10^{3} = 5.5 \times 10^{-5} \text{ g.s}^{-1}$. Hence answer is $5.5 \times 10^{-5} \text{ g.}$
I-22	Lebox is dipped in water at 20° C whose parameters are given. Therefore, transfer of heat by conduction from
1-22	water to ice. Accordingly, $\frac{\Delta Q}{\Delta t} = \frac{kA\Delta T}{l}$ (1) and this is responsible for melting of ice such that $\frac{\Delta Q}{\Delta t} = mL$
	(2) Here, <i>m</i> rate of melting of ice per second. Combining equations (1 & 2) and using the given data
	$\frac{0.06 \times (2400 \times 10^{-4}) \times (20 - 0)}{2.0 \times 10^{-3}} = m \times (3.4 \times 10^5) \Longrightarrow m = \frac{0.12 \times 2.4}{6.8} \times 10^{-5} = 4.2 \times 10^{-4}.$ Kg.s ⁻¹ . This is
	equivalent to $m = (4.2 \times 10^{-4}) \times 3600 = 1.5 \text{ kg.Hr}^{-1}$. Hence, answer is 1.5 kg.h ⁻¹
	N.B.: Since, this quantity of melting of ice is too small to be measurable from the scale of the given data. Therefore answer needs to be represented in measurable unit keeping into consideration significant digits. Accordingly, though in question nothing is stated about unit of time while asking rate of melting of ice, it converted from Kg.s ⁻¹ into kg.Hr ⁻¹ .
I-23	Water seeps out of nitcher through pours of its walk and evaporates absorbing heat from the water contained
1 25	in the pitcher. In the process temperature of water starts falling down until it becomes constant. Thus heat
	equation can be formed such that $m \times L = -\Delta Q = \frac{kA\Delta T}{\Delta T} \rightarrow \Delta T = \frac{m \times L \times l}{M \times L}$ Using the given data we
	Equation can be formed such that $m \times L = \frac{1}{\Delta t} = \frac{1}{l} = \frac{1}{k \times A}$. Using the given data we
	$(0.1 \times 10^{-3}) \times (2.27 \times 10^{6}) \times (1.0 \times 10^{-3})$
	get $\Delta T = -\frac{1}{0.80 \times (200 \times 10^{-4})} = -14^{\circ}$ C. Accordingly, Temperature equation is
	$\Delta T = T \qquad T \Rightarrow T = T + \Delta T \Rightarrow 42 14 = 28^{\circ} C Hence ensure is 28^{\circ} C$
	$\Delta I = I_w = I_a \implies I_w = I_a + \Delta I \implies 42 - 14 = 26$ C. Hence answer is 28 C.
	N.B.: Since heat is being lost by water contained inside pitcher and hence Δg is taken to be (-)ve.
I-24	Transfer of heat through steel frame from one to other end is through conduction and accordingly
	$\Delta Q = kA\Delta T$ Using the given data $\Delta Q = 45 \times (0.20 \times 10^{-4}) \times (40 - 20)$
	$\frac{2}{\Delta t} = \frac{1}{l}$. Using the given data $\frac{2}{\Delta t} = \frac{1}{0.60} = 0.03 \text{ J.s}^2 = 0.03 \text{ W}$. Thus answer is
	0.03 W.
1.25	The cost on is of the collinguised access hereing a light is wells and flat bettern of
1-23	The system is of the cylindrical vessel having adiabatic wans and that bottom of aluminum is shown in the figure. Assume that - (1) transfer of heat from water to the ambient is taking place through its flat bottom having outside temperature to be 20° C, (2) no heat transfer is taking from top surface of water through convection to the ambient, and (3) temperature of water is approximately constant at 50° C.
	$\Delta Q = k \times 2A \times \Delta T$ using the single singl
	$\frac{d}{\Delta t} = \frac{l}{l}$, using the given data Flat base of aluminum
	$\Delta Q = \frac{200 \times 2 \times (10 \times 10^{-4}) \times (50 - 20)}{-12000} = 12000 \text{ Ls}^{-1}$ Further, for fall of temperature
	$\frac{\Delta t}{\Delta t} = \frac{1 \times 10^{-3}}{1 \times 10^{-3}}$
	by 1°C the amount of heat lost by water is $AO = mcAT = (A \times h \times \pi) \times c \times (50, 40) \Rightarrow AO = (0, 10 \times (10 \times 10^{-4}) \times 1000) \times 4200 \times 1 = 4.2 \times 10^{2}$ using
	$\Delta \mathcal{Q} = m_{3} \Delta I = (A \times n \times O) \times 3 \times (30 - 49) \rightarrow \Delta \mathcal{Q} = (0.10 \times (10 \times 10^{-1}) \times 1000) \times 4200 \times I = 4.2 \times 10^{-1}, \text{ using}$
	the given data. Accordingly, time taken for fall of temperature by 1°C is $t = \frac{\Delta Q}{\Delta Q} = \frac{4.2 \times 10^2}{12000} = 0.035$ s.
	Δt
	N.B. : Based on assumptions answer would change, therefore, whenever any assumption is made it must be

	specified. Such questions can be expected as a part of subjective tests.
I 26	Since there me heat loss through rediction and hance only mode of
1-20	
	flow of heat is conduction which is constant at any cross-section of
	$\Delta Q k \times 2A \times \Delta T$ 80°C \Box
	the rod and, therefore, $\frac{2}{1} = \frac{1}{1}$. Accordingly,
	Δt l
	$\Delta T = 1 \rightarrow \Delta T_{20} = 20 \rightarrow \Delta T = 9 \times \Delta T = 9 \times (80 - 20) = 27^{\circ}$. Thus,
	$\Delta T_{0} = \frac{1}{20} =$
	$\Delta T = 27 = T_0 - T_9 \Longrightarrow T_9 = 80 - 27 = 53^{\circ} \text{C}. \text{ This part (a) of the Source}$
	answer. at 80°C 20°C
	Going back to equation of conduction of heat using given data
	Some suck to equation of conduction of neat, using given data,
	$\Lambda Q = 385 \times (0.20 \times 10^{-4}) \times (80 - 20)$
	$\frac{-2\varepsilon}{2} = \frac{1}{2} $
	Δt 0.20
	of the answer.
	Thus answer (a) 53° C and (b) 2.31 J.s ⁻¹
I_27	If another rod with one end at 250C touches the rod having heat transfer at
1 27	is another for which only the 2500 there will not be any light from the set of the set o
	point where temperature is 250°C there will not be any heat flow from the
	another rod.
	Given system as shown in figure is having constant heat transfer from source
	to sink at the equilibrium condition. Applying the form of equation of a line $T_x \downarrow$
	for which coordinates of two points on it are known. In the instant these two $0^{\circ}C$
	points are (0,100) and (1000) Accordingly equation of line is
	points are $(0,100)$ and $(100,0)$. Accordingly, equation of fine is $at 80^{\circ}C \leftarrow T \longrightarrow 0^{\circ}C$
	$\theta = \theta - T_2 - T_1 (r - r) \rightarrow 25 = 100 - \frac{0 - 100}{(r - 0)} \rightarrow r - 75$ This is
	$v_x = v_1 = \frac{1}{1} (x - x_1) \Rightarrow 23 = 100 = \frac{100}{100} (x - 0) \Rightarrow x = 73$. This is
	the distance from the hot end. Therefore distance from the cold end is
	$1 \approx 100.75$ 25 m H are recenced 25 m
	t - x = 100 - 75 = 25 cm. Hence answer is 25 cm. heat flow 25%
I-28	Given that the box is cubical having volume 216 cm ³ , Therefore sides of the cube are
	$V = L^3 = 216 \Rightarrow L = (216)^3 = 6$ cm and therefore surface area of cube is $A = 6L^2 = 6 \times 6^2 = 216$ cm ² . It is
	required to find thermal conductivity (k) of the wooden cubical box of thickness $l = 0.1$ cm with $\frac{dQ}{dQ} = 100$
	dt
	W bester inside and terms difference screes wells $\Lambda T = 5^0 C$. Applying equation of best for conduction
	w heater histor and temp difference across wans $\Delta I = 5$ C. Applying equation of heat for conduction
	$\frac{dQ}{dQ} \times l$ (0.1 10 ⁻²)
	$dQ = kA\Delta T$, $dt \sim 100 \times (0.1 \times 10^{-2})$ $a \sim 10^{-1} \text{ m}$, $a \sim 10^{-1} \text{ m}$
	$\frac{dt}{dt} = \frac{1}{1} \Rightarrow k = \frac{dt}{A \times AT} = \frac{1}{(216 \times 10^{-4}) \times 5} = 9.2 \times 10^{-4} \text{ W.m}^{-3} \text{ C}^{-1}$ Thus answer is 0.92 W.m ⁻³ C ⁻¹ .
	$\begin{array}{cccc} a & i & A \times \Delta I & (210 \times 10 &) \times 5 \end{array}$
I-29	In the given problem when the block of mass M is released from state of rest it attains a constant speed of
>	
	falling $\frac{dn}{dt} = 10 \text{ cm.s}^{-1}$ and at that point steady state temperature of water is 1°C while temperature outside the
	dt
	dW = dh
	water container is 0°C. Thus from the given data $\Delta T = 1^{\circ}C$ and $\frac{dT}{dr} = Mg\frac{dT}{dr} = M \times 10 \times (10 \times 10^{-2}) = M$
	dt dt dt
	dW dQ
	J.s ⁺ . This is case of thermo-mechanical equilibrium where $\frac{1}{L} = \frac{2}{L}$. For conduction of heat
	$\frac{dQ}{dt} = \frac{kA\Delta T}{dt} = \frac{0.50 \times 0.05 \times 1}{1.051} = 12.5 \text{ L}s^{-1}$ Using the equilibrium equation with values errived at shows
	$dt = l = \frac{2.0 \times 10^{-3}}{2.0 \times 10^{-3}} = 12.53$ s Using the equation with values arrived at above
	M = 12.5 kg Honeo onswer is 12.5 Kg
1	$1^{\prime\prime}$ = 12.3 kg. Hence answer is 12.3 kg.

I-30	In this problem rate of transfer of heat by conduction $\frac{dQ}{dt} = \frac{kA\Delta T}{l}$ through ice layer of thickness $l = 0.10$ m has to be equal to rate of solidification of ice where $\frac{dQ}{dt} = L\frac{dM}{dt} = \frac{L(\sigma Adl)}{dt}$. Equating the two, with the given data we get, $\frac{1.7 \times 1 \times (0 - (-10))}{10 \times 10^{-2}} = \left(\frac{1 \times dl \times 1000}{dt}\right) \times (3.36 \times 10^5) \Rightarrow \frac{dl}{dt} = \frac{1.7 \times 10^2}{3.36 \times 10^8} = 0.5 \mu \text{ m.s}^{-1}$. Therefore answer of part (a) is $5.0 \times 10^{-7} \text{ m.s}^{-1}$.
	Combining the two equation of $\frac{dQ}{dt}$ we get $\frac{kA\Delta T}{l} = \frac{L(\sigma Adl)}{dt} \Rightarrow dt = \frac{L\sigma}{k\Delta T} ldl$. To determine time taken to form a layer of ice of 10 cm thickness on integration we get $\int_{0}^{t} dt = \frac{L\sigma}{k\Delta T} \int_{0}^{0.1} ldl \Rightarrow t = \frac{L\sigma}{k\Delta T} \left[\frac{l^2}{2} \right]_{0}^{0.1} = \frac{(3.36 \times 10^5) \times 1000}{1.7 \times 10 \times 2} \times (1 \times 10^{-2}) = 1 \times 10^5 \text{ s} = \frac{1 \times 10^5}{60 \times 60} = 27.5 \text{ Hrs.}$ Therefore answer of part (b) is 27.5 Hrs.
I-31	In a state of steady-state of thickness of the ice (x) formed, will always remain as top layer since $\sigma_{ice} < \sigma_{water}$, and rate of heat transfer by conduction would be $\frac{dQ_{ice}}{dt} = \frac{dQ_{water}}{dt}$. In the lake while area would remain same for both water and ice, but thickness of ice and water layers would be $l_{ice} = x$ and $l_{iwater} = 1 - x$, respectively. Since, during conduction $\frac{dQ}{dt} = \frac{kA\Delta T}{l}$. Accordingly, in equilibrium the equation would be $\frac{0.5 \times A \times (4-0)}{1.0 - x} = \frac{1.7 \times A \times (0 - (-10))}{x} \Rightarrow 2.0 \times x = 17(1 - x) \Rightarrow x = \frac{17}{19} = 0.89$ m. Hence answer is 89 cm. N.B.: Here data on density of water and latent heat of fusion of ice are redundant and should not be confused.
I-32	The rate of flow of heat by conduction in the instant case is $\frac{dQ}{dt} = \frac{KA\Delta T}{l}$. Accordingly heat flow in each section, using the given data would be as under Section AB : $\frac{dQ}{dt} = \frac{K_{AB}A(T_A - T_B)}{dt} = \frac{50 \times 1 \times 10^{-4} \times (40 - 80)}{0.20} = -1$ W. (-)ve sign shows that heat flow in the section is from B to A. Section AC : $\frac{dQ}{dt} = \frac{K_{AC}A(T_A - T_C)}{dt} = \frac{400 \times 1 \times 10^{-4} \times (40 - 80)}{0.20} = -8$ W. (-)ve sign shows that heat flow in the section is from C to A Section BC : $\frac{dQ}{dt} = \frac{K_{BC}A(T_A - T_B)}{dt} = \frac{200 \times 1 \times 10^{-4} \times (80 - 80)}{0.20} = 0$ W. Since both the ends of the rod are at same temperature leading to $\Delta T = 0$. Thus, answer is 1W, 8W and Zero.

1-33
The rate of flow of heat by conduction in the instant case is
$$\frac{dQ}{dl} = \frac{KAT}{l}.$$
In the given case there are Two puth of heat
conduction- (1) straight path AB where $I_{AR} = 2r$ and (ii) semicircular
path APB where $I_{ARP} = \pi r$. Accordingly, .

$$\frac{dQ_{ARP}}{dr} = \frac{KA(T_A - T_B)}{2r} \text{ and } \frac{dQ_{ARP}}{dr} = \frac{KA(T_A - T_B)}{\pi r}.$$
The ratio A_T
required to be $KA(T_A - T_B)$.

$$\frac{Q_{ARP}}{Q_{ARP}} = \frac{KA(T_A - T_B)}{dt} = \frac{\pi}{KA(T_A - T_B)} = \frac{2}{\pi} \Rightarrow Q_{ARP} : Q_{ARP} : 2:\pi.$$
Hence answer is 2:π.
1-35
In the instant case heat transfer is through conduction where $\frac{dQ}{dt} = \frac{kAAT}{t}$. Let
us take an element of tube of length *l* having radius *r* and thickness Λr . Heat
transfer through $\frac{dQ_r}{dt} = \frac{k(2\pi r)\Lambda \theta}{dr} = K \Rightarrow \Delta \theta = \frac{K}{2k\pi t} \frac{dr}{r}$. The rate of heat
transfer in steady state remains constant all through very infinitesimal element,
without temp buildup along thickness of the trans of the transfer is tarough conduction where $\frac{dQ}{r_1} = \frac{K}{L} \frac{MAT}{r}$. Using the given data the rate of heat flow
 $\frac{\delta}{\eta} d\theta = \frac{K}{2k\pi t}, \frac{1}{\eta} \frac{d\tau}{r} \Rightarrow \theta_r - \theta_r = \frac{K}{2k\pi t} [\ln r]_r^2 \Rightarrow K = (\theta_r - \theta_r), \frac{2k\pi t}{r_r}$. Using the given data the rate of heat flow
 $\frac{\delta}{\eta} \frac{d\theta}{dt} = \frac{K}{2k\pi t} \frac{1}{\eta} \frac{dt}{r} \Rightarrow \theta_r - \theta_r = \frac{K}{2k\pi t} [\ln r]_r^2 \Rightarrow K = (\theta_r - \theta_r), \frac{2k\pi t}{r_r}$. It cus
take an element of washer, along its width, having radius *r* and thickness Δr . Heat
transfer through $\frac{dQ_r}{dt} = \frac{k(2\pi r d)\Delta\theta}{h} = -232.4 \text{ J.s}^2$. Here (-)we sign is indicative of the fact that during
radial flow of heat temperature gradient is (-)we along (+)we direction of *r*, therefore absolute value of heat
flow is 232 J.s-1 , considering SCs. Hence answer is 232 J.s^2 .

$\frac{dQ}{dt} = -kA\frac{d\theta}{dl}, \text{ and is being appled to different geometrical configurations given in the problem.}$ Part (a): It is a case of axial Conduction. As shown in the figure an element of pipe of thickness Δx is taken a distance x from the end whose cross-section is at temperature T_1 . Let cross-section of pipe having area $A = \pi \left(r_2^2 - r_1^2 \right)$. Thus heat flow through the cross-sectional element of tube of thickness Δx is $\frac{dQ}{dt} = -k\pi \left(r_2^2 - r_1^2 \right) \frac{d\theta}{dx} = K$ this is constant since in there is no absorption of heat and therefore constant temperature of each cross $Kdx = -k\pi \left(r_2^2 - r_1^2 \right) d\theta \Rightarrow \int_{0}^{t} Kdx = -\int_{T_1}^{T_2} k\pi \left(r_2^2 - r_1^2 \right) d\theta \Rightarrow Kl = -k\pi \left(r_2^2 - r_1^2 \right) (T_2 - T_1) = k\pi \left(r_2^2 - r_1^2 \right)$. This resolves into $K = \frac{dQ}{t_1} = \frac{k\pi \left(r_2^2 - r_1^2 \right) (T_1 - T_2)}{t_1}$. Hence answer of part (a) is $\frac{k\pi \left(R_2^2 - R_1^2 \right) (T_1 - T_2)}{t_1}$.	T_2 T_2 steady state oss-section. $(T_1 - T_2) \cdot$
$\frac{dt}{dt} \qquad \frac{dl}{dt}$ configurations given in the problem. Part (a) : It is a case of axial Conduction. As shown in the figure an element of pipe of thickness Δx is taken a distance x from the end whose cross-section is at temperature T_1 . Let cross-section of pipe having area $A = \pi \left(r_2^2 - r_1^2\right)$. Thus heat flow through the cross- sectional element of tube of thickness Δx is, $\frac{dQ}{dt} = -k\pi \left(r_2^2 - r_1^2\right) \frac{d\theta}{dx} = K$ this is constant since in there is no absorption of heat and therefore constant temperature of each cr $Kdx = -k\pi \left(r_2^2 - r_1^2\right) d\theta \Rightarrow \int_{0}^{t} Kdx = -\int_{T_1}^{T_2} k\pi \left(r_2^2 - r_1^2\right) d\theta \Rightarrow Kl = -k\pi \left(r_2^2 - r_1^2\right) (T_2 - T_1) = k\pi \left(r_2^2 - r_1^2\right)$ This resolves into $K = \frac{dQ}{t_1} = \frac{k\pi \left(r_2^2 - r_1^2\right) (T_1 - T_2)}{t_1}$. Hence answer of part (a) is $\frac{k\pi \left(R_2^2 - R_1^2\right)}{t_1}$	T_2 T_2 T_2 steady state oss-section. $(T_1 - T_2) \cdot$
Part (a): It is a case of axial Conduction. As shown in the figure an element of pipe of thickness Δx is taken a distance x from the end whose cross-section is at temperature T_1 . Let cross-section of pipe having area $A = \pi \left(r_2^2 - r_1^2\right)$. Thus heat flow through the cross- sectional element of tube of thickness Δx is, $\frac{dQ}{dt} = -k\pi \left(r_2^2 - r_1^2\right) \frac{d\theta}{dx} = K$ this is constant since in there is no absorption of heat and therefore constant temperature of each cr $Kdx = -k\pi \left(r_2^2 - r_1^2\right) d\theta \Rightarrow \int_0^1 Kdx = -\int_{T_1}^{T_2} k\pi \left(r_2^2 - r_1^2\right) d\theta \Rightarrow Kl = -k\pi \left(r_2^2 - r_1^2\right) (T_2 - T_1) = k\pi \left(r_2^2 - r_1^2\right)$ This resolves into $K = \frac{dQ}{L_1} = \frac{k\pi \left(r_2^2 - r_1^2\right) (T_1 - T_2)}{L_1}$. Hence answer of part (a) is $\frac{k\pi \left(R_2^2 - R_1^2\right)}{L_1}$	steady state oss-section. $(T_1 - T_2)$.
element of pipe of thickness Δx is taken a distance x from the end whose cross-section is at temperature T_1 . Let cross-section of pipe having area $A = \pi \left(r_2^2 - r_1^2\right)$. Thus heat flow through the cross- sectional element of tube of thickness Δx is, $\frac{dQ}{dt} = -k\pi \left(r_2^2 - r_1^2\right) \frac{d\theta}{dx} = K$ this is constant since in there is no absorption of heat and therefore constant temperature of each cross- $Kdx = -k\pi \left(r_2^2 - r_1^2\right) d\theta \Rightarrow \int_0^l Kdx = -\int_{T_1}^{T_2} k\pi \left(r_2^2 - r_1^2\right) d\theta \Rightarrow Kl = -k\pi \left(r_2^2 - r_1^2\right) (T_2 - T_1) = k\pi \left(r_2^2 - r_1^2\right)$ This resolves into $K = \frac{dQ}{L} = \frac{k\pi \left(r_2^2 - r_1^2\right) (T_1 - T_2)}{L}$. Hence answer of part (a) is $\frac{k\pi \left(R_2^2 - R_1^2\right)}{L}$	steady state ross-section. $(T_1 - T_2)$.
whose cross-section is at temperature T_1 . Let cross-section of pipe having area $A = \pi \left(r_2^2 - r_1^2\right)$. Thus heat flow through the cross- sectional element of tube of thickness Δx is, $\frac{dQ}{dt} = -k\pi \left(r_2^2 - r_1^2\right) \frac{d\theta}{dx} = K$ this is constant since in there is no absorption of heat and therefore constant temperature of each cr $Kdx = -k\pi \left(r_2^2 - r_1^2\right) d\theta \Rightarrow \int_0^l Kdx = -\int_{r_1}^{r_2} k\pi \left(r_2^2 - r_1^2\right) d\theta \Rightarrow Kl = -k\pi \left(r_2^2 - r_1^2\right) (T_2 - T_1) = k\pi \left(r_2^2 - r_1^2\right)$ This resolves into $K = \frac{dQ}{l_1} = \frac{k\pi \left(r_2^2 - r_1^2\right) (T_1 - T_2)}{l_1}$. Hence answer of part (a) is $\frac{k\pi \left(R_2^2 - R_1^2\right) (T_1 - R_1)}{l_1}$.	steady state ross-section. $(T_1 - T_2)$.
having area $A = \pi \left(r_2^2 - r_1^2\right)$. Thus heat flow through the cross- sectional element of tube of thickness Δx is, $\frac{dQ}{dt} = -k\pi \left(r_2^2 - r_1^2\right) \frac{d\theta}{dx} = K$ this is constant since in there is no absorption of heat and therefore constant temperature of each cr $Kdx = -k\pi \left(r_2^2 - r_1^2\right) d\theta \Rightarrow \int_0^t Kdx = -\int_{r_1}^{r_2} k\pi \left(r_2^2 - r_1^2\right) d\theta \Rightarrow Kl = -k\pi \left(r_2^2 - r_1^2\right) (T_2 - T_1) = k\pi \left(r_2^2 - r_1^2\right)$ This resolves into $K = \frac{dQ}{L} = \frac{k\pi \left(r_2^2 - r_1^2\right) (T_1 - T_2)}{L}$. Hence answer of part (a) is $\frac{k\pi \left(R_2^2 - R_1^2\right) (T_1 - T_2)}{L}$	steady state ross-section. $(T_1 - T_2)$.
sectional element of tube of thickness Δx is, $\frac{dQ}{dt} = -k\pi (r_2^2 - r_1^2) \frac{d\theta}{dx} = K$ this is constant since in there is no absorption of heat and therefore constant temperature of each cu $Kdx = -k\pi (r_2^2 - r_1^2) d\theta \Rightarrow \int_0^l Kdx = -\int_{r_1}^{r_2} k\pi (r_2^2 - r_1^2) d\theta \Rightarrow Kl = -k\pi (r_2^2 - r_1^2) (T_2 - T_1) = k\pi (r_2^2 - r_1^2)$ This resolves into $K = \frac{dQ}{l_1} = \frac{k\pi (r_2^2 - r_1^2) (T_1 - T_2)}{l_2}$. Hence answer of part (a) is $\frac{k\pi (R_2^2 - R_1^2) (T_1 - T_2)}{l_2}$	steady state ross-section. $(T_1 - T_2)$.
there is no absorption of heat and therefore constant temperature of each curves $Kdx = -k\pi (r_2^2 - r_1^2) d\theta \Rightarrow \int_0^l Kdx = -\int_{T_1}^{T_2} k\pi (r_2^2 - r_1^2) d\theta \Rightarrow Kl = -k\pi (r_2^2 - r_1^2) (T_2 - T_1) = k\pi (r_2^2 - r_1^2)$ This resolves into $K = \frac{dQ}{L} = \frac{k\pi (r_2^2 - r_1^2) (T_1 - T_2)}{L}$. Hence answer of part (a) is $\frac{k\pi (R_2^2 - R_1^2) (T_1 - T_2)}{L}$	$(T_1 - T_2) \cdot$
$Kdx = -k\pi \left(r_{2}^{2} - r_{1}^{2}\right) d\theta \Rightarrow \int_{0}^{\infty} Kdx = -\int_{T_{1}}^{\infty} k\pi \left(r_{2}^{2} - r_{1}^{2}\right) d\theta \Rightarrow Kl = -k\pi \left(r_{2}^{2} - r_{1}^{2}\right) \left(T_{2} - T_{1}\right) = k\pi \left(r_{2}^{2} - r_{1}^{2}\right)$ This resolves into $K = \frac{dQ}{k} = \frac{k\pi \left(r_{2}^{2} - r_{1}^{2}\right) \left(T_{1} - T_{2}\right)}{k\pi \left(r_{2}^{2} - r_{1}^{2}\right)}$. Hence answer of part (a) is $\frac{k\pi \left(R_{2}^{2} - R_{1}^{2}\right)}{k\pi \left(r_{2}^{2} - R_{1}^{2}\right)}$	$(T_1 - T_2)$.
This resolves into $K = \frac{dQ}{k} = \frac{k\pi (r_2^2 - r_1^2)(T_1 - T_2)}{k}$. Hence answer of part (a) is $\frac{k\pi (R_2^2 - R_1^2)(T_1 - T_2)}{k}$	
l dt l	$\left(T_2 - T_1\right)$
Part (b) : This is a case of radial conduction. As per Fourier's Law heat transfer by conduction	through a
small element, as shown in the figure, is $\frac{dQ}{dt} = -\frac{k(2\pi rd)\Delta\theta}{dr} = K$, having radius	
r and outer radius $r + \Delta r$ maintained at temperatures T and T respectively. The	N.
rate of heat transfer in steady state remains constant all through every infinitesimal	XAT-Dr.
element, without temp buildup along thickness of the tube. Hence,)ii)
$\int_{T_1}^{T_2} d\theta = -\frac{K}{2k\pi d} \cdot \int_{r_1}^{r_2} \frac{dr}{r} \Rightarrow T_2 - T_1 = -\frac{K}{2k\pi d} [\ln r]_{r_1}^{r_2} \Rightarrow T_1 - T_2 = \frac{K}{2k\pi d} \cdot \ln \frac{r_2}{r_1}$. It leads to rate	
dQ $() 2k\pi d$ $() 2k\pi d$	
of heat $K = \frac{z}{dt} = (T_1 - T_2) \cdot \frac{r_2}{1 - T_2}$ Hence answer is $\frac{2\pi k d (T_1 - T_2)}{(T_1 - T_2)}$	
$\ln \frac{1}{r_1}$ $\ln \left(\frac{r_2}{r_1}\right)$	
I-38 The two slabs are as shown in the figure of thickness L_1 and L_2 having	L
equal area A and having temperatures at their outer surfaces as T_1 and T_3	₽
respectively. The common surface of the Two slabs is at temperature T_2	¥
$dO = K A(T - T_{\rm c})$	1
such that $T_1 > T_2 > T_3$. Therefore, $\frac{dQ_1}{dt} = \frac{\pi_1 \pi (T_1 - T_2)}{L_1}$ and $T_1 = \frac{\pi_1 \pi (T_1 - T_2)}{L_1}$	L ₂
$dQ_2 K_2 A (T_2 - T_3)$	с. С
$\frac{dt}{dt} = \frac{1}{L_2}$. Let the thermal conductivity of the composite slab be K, then rate of R	ieat transfer
through the system would be $\frac{dQ}{dt} = \frac{KA(T_1 - T_3)}{L_1 + L_2}$. Since the system is at equilibrium and therefore	ore rate heat
entering the system at temperature T_1 is same at every layer of system including that at temperature	term T and
therefore, $\frac{dQ}{dt} = \frac{dQ_1}{dt} = \frac{dQ_2}{dt}$. Accordingly, equating $\frac{dQ}{dt}$ and $\frac{dQ_1}{dt}$ we get $\frac{K(T_1 - T_3)}{L_1 + L_2} = \frac{K_1(T_1 - T_3)}{L_1 + L_2}$	ture I_3 and
leads to $\frac{K(T_1 - T_3)}{L_1 + L_2} = \frac{K_1(T_1 - T_2)}{L_1} \Longrightarrow K \frac{L_1}{K_1(L_1 + L_2)} (T_1 - T_3) = T_1 - T_2 \dots (1)$. Likewise, equation	$\frac{T_1 - T_2}{L_1}$. It

	$\frac{dQ_2}{dt} \text{ we get } \frac{K(T_1 - T_3)}{L_1 + L_2} = \frac{K_2(T_2 - T_3)}{L_2} \Longrightarrow K \frac{L_2}{K_2(L_1 + L_2)} (T_1 - T_3) = T_2 - T_3 \dots (2) \text{ Adding (1) and (2)}$
	$K\frac{L_{1}}{K_{1}(L_{1}+L_{2})}(T_{1}-T_{3})+K\frac{L_{2}}{K_{2}(L_{1}+L_{2})}(T_{1}-T_{3})=T_{1}-T_{3} \Longrightarrow K\left(\frac{L_{1}}{K_{1}(L_{1}+L_{2})}+\frac{L_{2}}{K_{2}(L_{1}+L_{2})}\right)=1.$ It
	solves into $K\left(\frac{K_2L_1+K_1L_2}{K_1K_2(L_1+L_2)}\right) = 1 \Longrightarrow K = \frac{K_1K_2(L_1+L_2)}{K_2L_1+K_1L_2}$. Thus answer is $\frac{K_1K_2(L_1+L_2)}{L_1K_2+L_2K_1}$.
I-39	This is the case of series combination of two rods of copper $(K_1 = 390 \text{ W.m}^{-1.0} \text{ C}^{-1})$ and steel
	$(K_2 = 46 \text{ W.m}^{-1.0} \text{ C}^{-1})$ having equal length L and area A and hence thermal conductivity of the series
	combination would be $K = \frac{K_1 K_2 (L+L)}{L K_2 + L K_1} \Rightarrow K = \frac{390 \times 46 \times 2}{390 + 46} = 82 \text{ W.m}^{-1.0} \text{C}^{-1}$. Thus with the given
	temperature difference across the combination rate of heat transfer would be
	$\frac{dQ_{\text{comb}}}{dt} = \frac{82A(100-0)}{2L} = 4100\frac{A}{L}$. Let temperature at the junction of the combination be θ therefore rate
	of heat transfer through copper rod would be $\frac{dQ_{Cu}}{dt} = \frac{390A(\theta - 0)}{I} = 390\frac{A\theta}{I}$. In state of equilibrium rate
	of heat transfer through every section of the combination would be same accordingly
	$\frac{dQ_{\text{comb}}}{dt} = \frac{dQ_{\text{Cu}}}{dt} \Longrightarrow 4100 \frac{A}{L} = 390 \frac{A\theta}{L} \Longrightarrow \theta = \frac{4100}{390} = 10.5 ^{\circ}\text{C}. \text{ Hence answer is } 10.5 ^{\circ}\text{C}.$
I-40	Rate of heat transfer by conduction is $\frac{dQ}{dt} = \frac{KA\Delta\theta}{l}$. Since temperature difference across both the copper
	and aluminum rods connected in parallel are $\Delta \theta = 60 - 20 = 40^{\circ}$ C, therefore $\frac{dQ}{dt} = \frac{dQ_{Cu}}{dt} + \frac{dQ_{Al}}{dt}$. On
	substituting the given data $\frac{dQ}{dr} = \frac{390 \times (1 \times 10^{-4}) \times 40}{10} + \frac{200 \times (1 \times 10^{-4}) \times 40}{10} = 2.36 \text{ J}.$ Hence answer is
	<i>dt</i> 1 1 2.36 J.
I-41	$dQ KA\Delta\theta$
	Rate of near transfer through conduction is $\frac{dt}{dt} = \frac{l}{l}$.
	Accordingly, in aluminum section towards the cold junction 00° $Q_{AI} \rightarrow Q_{Cu} = 00^{\circ}$
	$\frac{dQ_{\rm Al}}{dt} = \frac{K_{\rm Al}A\Delta\theta}{l} = \frac{200 \times (0.20 \times 10^{-1}) \times (80 - 40)}{0.20} = 0.80$
	$dO_{c} = K_{c} A\Delta\theta = 400 \times (0.20 \times 10^{-4}) \times (80 - 40)$
	and in copper section towards the cold joint is $\frac{-c_u}{dt} = \frac{-c_u}{l} = \frac{-c_u}{0.20} = 1.60$.
	Thus total heat taken out of the cold joint is $\frac{dQ}{dt} = \frac{dQ_{AI}}{dt} + \frac{dQ_{AI}}{dt} = 0.8 + 1.6 = 2.4 \text{ J.s}^{-1}$. Therefore, net rate of
	heat taken out of the cold joint in one minute is $=2.4 \times 60 = 144 \text{ J.m}^{-1}$. Hence answer is 144 J

I-42	Let temperature at points B and C are T_B and T_C E \mathfrak{O}_{cm} E
	respectively. The cross-sectional area of each part of the
	frame be A and thermal conductivity of the material be 0^{-C} 20 cm B $C^{-20 \text{ cm}}$
	K. Heat transfer through conduction is $\frac{dQ}{dr} = \frac{KA\Delta\theta}{dr}$.
	dt l The system can be visualized as shown in the figure and accordingly heat flowing in section AB is
	$AO = KA(T_x - 0) = KAT = AO = KA(T_x - T_x)$
	$\frac{d\mathcal{Q}_{AB}}{dt} = \frac{dH(T_B - 0)}{0.20} = \frac{H(T_B)}{0.20}; \text{ in section B-C it is } \frac{d\mathcal{Q}_{BC}}{dt} = \frac{H(T_C - T_B)}{0.60};$
	$\frac{dO_{\text{B}}}{dO_{\text{B}}} = \frac{KA(T_{\text{C}} - T_{\text{B}})}{KA(T_{\text{C}} - T_{\text{B}})} = \frac{KA(T_{\text{C}} - T_{\text{B}})}{KA(T_{\text{C}} - T_{\text{B}})}$
	in section B-E-F-C it is $\frac{d^2 \mathcal{L}_{BEPC}}{dt} = \frac{d^2 \mathcal{L}_{BP}}{0.05 + 0.60 + 0.05} = \frac{d^2 \mathcal{L}_{BP}}{0.70}$ and in A-B B-C C-D
	$dQ_{\rm CD} = KA(100 - T_{\rm C})$ with $dQ_{\rm CD} = KA(100 - T_{\rm C})$
	section C-D it is $\frac{dt}{dt} = \frac{1}{0.20}$. When system is in equilibrium
	$\frac{dQ_{AB}}{dt} = \frac{dQ_{CD}}{dt} = 170 \text{ J.s}^{-1}. \text{ Accordingly, in section A-B}, \frac{KAT_{B}}{0.20} = 170 \Rightarrow T_{B} = \frac{34}{KA} \text{ and in section C-D} \text{ it is}$
	$\frac{KA(100 - T_{\rm C})}{0.20} = 170 \Rightarrow 100 - T_{\rm C} = \frac{34}{KA} \Rightarrow T_{\rm C} = 100 - \frac{34}{KA}.$ Therefore, heat flowing in section B-C is
	$\frac{dQ_{\rm BC}}{dt} = \frac{KA(T_{\rm C} - T_{\rm B})}{0.60};$ substituting the intermediate temperatures derived above
	$dQ_{\rm PC} = KA\left(\left(100 - \frac{34}{KA}\right) - \frac{34}{KA}\right) = 100KA - 68$
	$\frac{-2.60}{dt} = \frac{-1.00}{0.60} = \frac{-1.00}{0.60}$ and
	$KA\left(\left(100-\frac{34}{2}\right)-\frac{34}{2}\right)$ $\frac{dQ_{\rm BC}}{dQ_{\rm BC}} = \frac{100KA-68}{2}$
	$\frac{dQ_{\text{BEFC}}}{dQ_{\text{BEFC}}} = \frac{dT_{\text{c}}(100 \text{ KA}) \text{ KA}}{100 \text{ KA}} = \frac{100 \text{ KA} - 68}{100 \text{ KA} - 68}.$ It leads to Since $\frac{dt}{100 \text{ KA}} = \frac{0.60}{100 \text{ KA} - 60} \Rightarrow \frac{dt}{100 \text{ KA}} = \frac{0.7}{100 \text{ KA} - 60}$
	$\frac{dt}{dt} = 0.70 \qquad 0.70 \qquad \frac{dQ_{\text{BEFC}}}{t} = \frac{100KA - 68}{0.70} = \frac{dQ_{\text{BEFC}}}{t} = 0.6$
	dt = 0.70 dt
	$\frac{d\mathcal{Q}_{AB}}{dt}$ 1.3 dQ_{press} 0.6
	Applying componendo, $\frac{dt}{dQ_{\text{REFC}}} = \frac{1.5}{0.6} \Rightarrow \frac{dQ_{\text{BEFC}}}{dt} = 130 \times \frac{0.6}{0.7} = 60 \text{ J}$. Thus answer is 60 J.
	$\frac{2}{dt}$ $\frac{dt}{dt}$ $\frac{dt}{dt}$
	N.B.: This is an example of simplification using compnendo of algebra in simplifying the calculations
I-43	Let temperatures at point B and C of the system be are
	T_B and T_C respectively. While, the cross-sectional area of A_{Scan}
	each section is same the lengths of each section of heat $0^{\circ}C$ are B C and C are C are C and C are C and C are C are C and C are C a
	section BEEC is $K_{\rm r} = 780$ Ls ⁻¹ m ⁻¹ °C ⁻¹ while that of section BC is
	$K_{\rm r} = 390$ J s ⁻¹ m ⁻¹ °C ⁻¹ Therefore rate of conduction of heat in section
	BCDEF is A-B C-D
	$dQ_1 = K_1 A (T_C - T_B) = dQ_1$ B-C
	$\frac{\overline{dt}}{\overline{dQ}} = \frac{\overline{0.05 + 0.60 + 0.05}}{W + V(\overline{T}, \overline{T})} \Rightarrow \frac{\overline{dt}}{\overline{dQ}} = \frac{0.60K_1}{0.70K_1} = \frac{0.60 \times 780}{0.70K_1} = \frac{12}{0.70K_1} \Rightarrow \frac{dQ_1}{12} :: 12:7$
	$\frac{dQ_2}{dt} = \frac{K_2 A (T_c - T_B)}{0.60} \qquad \frac{dQ_2}{dt} \qquad 0.70 \times 390 \qquad 7 \qquad dt \qquad dt$
	. Hence answer is 12:7.
I-44	Heat transfer through conduction is $\frac{dQ}{dQ} - \frac{KA\Delta\theta}{KA\Delta\theta} - \frac{\Delta\theta}{\Delta\theta}$ here $R - \frac{l}{M}$ is thermal resistance of the heat
	The transfer through conduction is $\frac{l}{dt} = \frac{l}{l} = \frac{-1}{R}$, here $R = \frac{-1}{KA}$ is the matrice of the heat

	conduction medium. The problem is solved part-wise.
	Part (a): In case of heat conduction through window $R_g = \frac{2 \times 10^{-3}}{1 \times (1 \times 2)} = 1 \times 10^{-3}$ hence
	$\frac{dQ_g}{dt} = \frac{(40-32)}{1\times10^{-3}} = 8000 \text{ J.s}^{-1}.$ This is answer of Part (a) Part (b): In this case air film of 1mm thickness is sandwiched between two glass panes each of thickness 1 mm it forms a series combinations of resistances with effective resistance such that $R'_g = \frac{1\times10^{-3}}{1\times(1\times2)} = 5\times10^{-4}$ and $R_a = \frac{1\times10^{-3}}{0.025\times(1\times2)} = 2\times10^{-2}.$ Thus in this
	case effective thermal resistance $R = R'_g + R_a + R'_g = 2 \times 5 \times 10^{-4} + 2 \times 10^{-2} = 21 \times 10^{-3}$. Hence, net rate of
	conduction of heat is conductivity would be $\frac{dQ_g}{dt} = \frac{(40-32)}{21 \times 10^{-3}} = 381$ J.s ⁻¹ . This is answer of Part (b).
	Hence answers are (a) 8000 $J.s^{-1}$ (b) 381 $J.s^{-1}$
I-45	Heat transfer through conduction is $\frac{dQ}{dt} = \frac{KA\Delta\theta}{l} = \frac{\Delta\theta}{R}$, here $R = \frac{l}{KA}$ is thermal resistance of the heat
	conduction medium. Let thermal resistance of part A is R_A and resistance of part B is R_A . Therefore,
	thermal current through the combination is $\frac{dQ}{dt} = \frac{\theta_1 - \theta_2}{R_A + R_B}$. And at junction of A-B whose temperature is
	$\theta_{\rm J} = 70^{0}$ C. Therefore, $\frac{dQ}{dt} = \frac{\theta_{\rm I} - \theta_{\rm J}}{R_{\rm A}} = \frac{\theta_{\rm J} - \theta_{\rm 2}}{R_{\rm B}}$. Accordingly, $\frac{R_{\rm A}}{R_{\rm B}} = \frac{100 - 70}{70 - 0} = \frac{30}{70}$. When rods are interchanged net resistance between the two heat source and sink would remain unchanged but junction
	temperature would take a new value θ_{J} such that
	$\frac{dQ}{dt} = \frac{\theta_1 - \theta_3}{R_B} = \frac{\theta_3 - \theta_2}{R_A} \Longrightarrow \theta_3 R_B - \theta_2 R_B = \theta_1 R_A - \theta_3 R_A \Longrightarrow \theta_3 (R_A + R_A) = \theta_1 R_A + \theta_2 R_B.$ Using the given
	data and the derived values $\theta'_{J}(R_A + R_B) = 100R_A + 0 \Rightarrow \theta'_{J} = 100\frac{R_A}{R_A + R_B}$ °C. Using invertendo-
	componendo the junction temperature in new condition is $\theta_{\rm j} = 100 \times \frac{30}{100} = 30^{0}$ C. Hence answer is 30 ^o C.
I-46	Heat transfer through conduction is $\frac{dQ}{dt} = \frac{KA\Delta\theta}{l} = \frac{\Delta\theta}{R}$, here $\frac{R_{A}}{R_{CA}} = \frac{R_{A}}{R_{CA}} = \frac{R_{A}}{R_{A}} = \frac{R_{A}$
	$R = \frac{l}{KA}$ is thermal resistance of the heat conduction medium. With the
	given data electrical analog of the heat conduction systems is shown in the figure for all the three cases respectively. Therefore, equivalent thermal resistance in the arrangement (a) would be $R_{\rm a} = R_{\rm Al} + R_{\rm Cu} + R_{\rm Al} = 2R_{\rm Al} + R_{\rm Cu}$. Accordingly temperature (b)
	difference across two ends of the arrangement would be $\Delta \theta = \frac{dQ_a}{dt}R_a = 40 \times \frac{l}{A} \left(\frac{2}{200} + \frac{1}{400}\right) = \frac{l}{2A}$.
	Now in arrangement (b) is a series parallel combination whose equivalent resistance is

$$R_{n} = R_{n} + \frac{R_{n}R_{cu}}{R_{n}} = \frac{l}{200A} + \frac{\frac{1}{200A} \times \frac{1}{400A}}{\frac{1}{200A} + \frac{1}{400A}} = \frac{l}{150A}.$$
 Therefore, rate of beat transfer maintaining temperature difference across extreme ends would be $\frac{dQ_{n}}{dt} = \frac{A_{p}}{R_{p}} = \frac{\frac{1}{2A}}{\frac{1}{150A}} = 75$ W is the answer for arrangement (b).
Next in arrangement (c) $\frac{1}{R_{c}} = \frac{1}{R_{u}} + \frac{1}{R_{u}} + \frac{1}{R_{u}} = \frac{R_{u} + 2R_{cu}}{R_{u}R_{e_{u}}} = \frac{\frac{1}{200A} + \frac{400A}{400A}}{\frac{1}{200A}} = 800\frac{A}{l}.$ Therefore rate of heat transfer maintaining temperature difference across extreme ends would be $\frac{dQ_{c}}{dt} = \frac{\Delta \rho}{R_{p}} = \frac{1}{2A} \times \frac{900A}{400A} = 400$ W is the answer for arrangement (c).
Thus answer is 75 W and 400 W.
N.B.: This is a case of analysis of a problem of thermal conduction using its electrical analog.
1-47
Heat transfer through conduction is $\frac{dQ}{dt} = \frac{AA}{R} = \frac{A}{R}$. Accordingly, resistances $R_{ren} = R_{ren} = \frac{3}{2KA}$ while $R_{An} = \frac{1}{KA}$.
Now let temperature of the junction B is T_{p} and there is no loss of heat to the atmosphere and hence net rate of beat transfer at the junction, as per principle conservation of energy is Zero. Accordingly, the equation would determine $\frac{dQ_{en}}{dt} + \frac{dQ_{en}}{dt} = 0 \Rightarrow \frac{2KA(T_{e} - T_{n})}{T} + \frac{KA(T_{e} - T_{n})}{T} + \frac{2KA(T_{e} - T_{n})}{T} = 0 \Rightarrow T_{e} + \frac{2}{3}(T_{e} + T_{e}) = \left(\frac{4}{3} + 1\right)T_{a}$.
Now let temperature of the junction B is T_{p} and there is no loss of heat to the atmosphere and hence net rate of beat transfer at the junction, as per principle conservation of energy is Zero. Accordingly, the equation would be $\frac{dQ_{en}}{dt} + \frac{dQ_{en}}{dt} = 0 \Rightarrow \frac{2KA(T_{e} - T_{n})}{T} = 0 \Rightarrow T_{e} + \frac{2}{3}(T_{e} + T_{e}) = \left(\frac{4}{3} + 1\right)T_{a}$.
1-48
Heat transfer through conduction is $\frac{dQ}{dt} = \frac{KA\Delta Q}{dt} = \frac{K}{A}$ here $R = \frac{T}{R}$ is thermal resistance of the heat conduction medium. With the given that there would be no flow of heat through ekements E and and its wite temperature of junction of rods C.D and F

$$R_{s} = R_{t} = \frac{l}{AK_{o}}; \text{ and } R_{r} = \frac{l}{4AK_{v}}, \text{ Accordingly, } \dot{Q}_{s} = (T_{2} - T_{APP}) \times \frac{2AK_{0}}{l}; \dot{Q}_{s} = (T_{aPV} - T_{i}) \times \frac{AK_{0}}{l}; \dot{Q}_{s} = (T_{cav} - T_{i}) \times \frac{AK_{0}}{l}; \dot{Q}_{s} = (T_{cav} - T_{i}) \times \frac{AK_{0}}{l}, \text{ and } \dot{Q}_{v} = (T_{APP} - T_{cav}) \times \frac{AAK_{0}}{l}, \text{ From these values heat transfer equations are rewritten as under -
$$\cdot (T_{s} - T_{av}) \times \frac{2AK_{0}}{l} = (T_{av} - T_{i}) \times \frac{AK_{0}}{l} \text{ and } \dot{Q}_{v} = (T_{aPV} - T_{cav}) \times \frac{AAK_{0}}{l} = 2(T_{s} - T_{av}) = (T_{aPV} - T_{cav}) + 4(T_{aPV} - T_{cav}) = (T_{cav} - T_{i}) + 4(T_{aPV} - T_{cav}) = (T_{cav} - T_{i}) \times \frac{AK_{0}}{l} = 2(T_{s} - T_{av}) = 2(T_{s} - T_{av}) = (T_{cav} - T_{i}) + 4(T_{aPV} - T_{cav}) = (T_{cav} - T_{i}) + 1$$

kads to $T_{aAV} - AT_{aDV} = 2T_{s} + T_{i} = (1)$
($T_{s} - T_{av}) \times \frac{2AK_{0}}{l} = (T_{av} - T_{cav}) \times \frac{4AK_{0}}{l} = (T_{cav} - T_{i}) \times \frac{1AK_{0}}{l} = 2(T_{s} - T_{av}) = (T_{cav} - T_{i}) + 4(T_{aPV} - T_{cav}) = (T_{cav} - T_{i}) + 1$
kads to $T_{aAV} - T_{aAV} = 2T_{s} + T_{i} = (2)$.
Since RHS of equation (1) and (2) are equal and hence equating LHS we get $T_{AW} = (T_{cav} - T_{aW}) + 2T_{aW} - 4T_{cav} + 2T_{aW} - 2T_{aV} + 2T_{aV}$$$

	the end r_2 where temperatures are θ_1 and θ_2 such that $\theta_2 > \theta_1$. Since flow of heat during conduction is from
	higher to lower temperature hence there is (-)ve sign in the arrived value. Thus answer is $\frac{k\pi r_1 r_2 (\theta_2 - \theta_1)}{L}$.
I-50	As per Fourier's Law of heat conduction $\frac{dQ}{dt} = -KA\frac{d\theta}{L}$. Rate of rise of temperature $\frac{d\theta}{dt} = \frac{60-0}{10\times60} = 0.10$
	⁰ C.s ⁻¹ . With the given data $\frac{dQ}{dt} = -\frac{200 \times (1 \times 10^{-4})}{0.20} \Delta \theta \Longrightarrow Q_{\text{Total}} = \sum_{1}^{600} \Delta Q_n = 0.10 \sum_{1}^{600} \Delta \theta_n$. Now at
	$t=0 \rightarrow \Delta \theta = 0$ and one second later $t=1 \rightarrow \Delta \theta = 0.10^{\circ}$ C. Therefore, based on mean value theorem
	$\theta_1 = \frac{0+0.10}{2} = 0.05^{\circ}$ C. With the $\frac{d\theta}{dt} = 0.10 \theta_2 = 0.05 + 0.10 = 0.15^{\circ}$ C. The RHS forms an arithmetic
	progression whose sum is $\sum_{1}^{600} \Delta \theta_n = \frac{600}{2} \Big[\theta_1 + (600 - 1) \Delta \theta \Big] = 300 (0.05 + 599 \times 0.10) = 17985$. Using
	this value in the equation for total heat transfer in 10 minutes $Q_{\text{Total}} = \sum_{1}^{600} \Delta Q_n = 0.10 \times 17985 = 1798$. Since
	in the given data SDs are Two and hence answer is 1800
I-51	As per Fourier's Law of heat conduction $dQ = kA d\theta$ Taking an
	As per round's law of heat conduction $\frac{d}{dt} = -\frac{kA}{dr}$. Taking an
	elemental in between the two sphere such that $r_1 \le r \le r_2$ of thickness Δr r_2
	whose area is $A = 4\pi r^2$. Temperature of sphere of radius $r_1 = 5 \times 10^{-2}$ m is
	50° C and $r_1 = 20 \times 10^{-2}$ m is 10° C a. In steady state heat conduction $\left\{ \left\ \left\{ \begin{array}{c} r_1 \\ r_2 \\ r_1 \\ r_1 \\ r_2 \\ r_1 \\ r_1 \\ r_1 \\ r_2 \\ r_1 \\ r$
	$\frac{dQ}{dt} = K = 100 \text{ J.s}^{-1}$. Let thermal conductivity of the medium filled in
	between the Two sphere is k . Hence, the equation of heat conduction is
	rewritten as $\int_{r_1}^{r_2} \frac{K}{k(4\pi r^2)} dr = -\int_{\theta_1}^{\theta_2} d\theta \Longrightarrow \frac{K}{4\pi k} \int_{r_1}^{r_2} \frac{dr}{r^2} = -\left[\theta\right]_{\theta_1}^{\theta_2}$. This solves
	into $\frac{K}{4\pi k} \left[-\frac{1}{r} \right]_{r_1}^{r_2} = -\left(\theta_2 - \theta_1\right) \Longrightarrow \frac{K}{4\pi k} \left(\frac{1}{r_2} - \frac{1}{r_1} \right) = \left(\theta_2 - \theta_1\right) \Longrightarrow k = \frac{K}{4\pi} \left(\frac{r_1 - r_2}{r_1 r_2} \right) \cdot \frac{1}{\theta_2 - \theta_1}.$ On substituting
	the given data $k = \frac{100}{4\pi} \left(\frac{5 \times 10^{-2} - 20 \times 10^{-2}}{(5 \times 10^{-2}) \times (20 \times 10^{-2})} \right) \cdot \frac{1}{10 - 50} = \frac{100}{4\pi} \times \frac{15}{1} \times \frac{1}{40} = 2.98 \text{ W.m}^{-1.0} \text{C}^{-1}$. Thus as per
	SDs the answer is $3.0 \text{ W.m}^{-1.0}\text{C}^{-1}$.
I-52	Let temperature of water in the two vessels A and B initially at temperatures θ_1 and θ_2 such that $\theta_1 > \theta_2$. Rate
	of heat conduction is $\frac{dQ}{dt} = \frac{KA\Delta\theta}{L}$ (1) As heat is conducted from water in vessel A to B, temperature of
	water in vessel A falls $\frac{dQ}{dt} = ms \frac{d\theta}{dt}$ and likewise temperature of water in vessel B rises with an equal
	amount since mass of water in both the vessels is same as much as heat transfer is also same. Therefore, combining the two equations for vessel A, during an infinitesimal time, equation (1) would be -
	$\frac{dQ}{dt} = \frac{ms\left(\theta_{A} - \theta_{A}^{'}\right)}{dt} = \frac{KA\left(\theta_{A}^{'} - \theta_{B}^{'}\right)}{L} \Longrightarrow \theta_{A}^{'} = \theta_{A} - \frac{KA}{msL}\left(\theta_{A}^{'} - \theta_{B}^{'}\right)dt.$

Likewise for vessel B equation (2) would be-

$$\frac{dQ}{dt} = \frac{ms(\theta_{a} - \theta_{b})}{dt} = \frac{KA(\theta_{a} - \theta_{a})}{L} \Longrightarrow \theta_{b} = \theta_{b} + \frac{KA}{mst}(\theta_{A} - \theta_{b})dt$$
Subtracting Eqn (2) from Eqn (1) we get
 $\theta_{A} - \theta_{a} = \theta_{A} - \theta_{a} - \frac{KA}{msL}(\theta_{A} - \theta_{a})dt - \frac{KA}{msL}(\theta_{A} - \theta_{a})dt$. It
simplifies
 $\theta_{A} - \theta_{b} = \theta_{A} - \theta_{b} - \frac{KA}{msL}(\theta_{A} - \theta_{a})dt = \Delta \theta = \theta_{A} - \theta_{b} - \frac{2KA}{msL}\Delta \theta = \frac{2KA}{\Delta \theta} dt$. Here, $A\theta$ which
is driving the forward process of heat transfer while $(\theta_{A} - \theta_{a}) = \frac{4A\theta}{\Delta \theta} = -\frac{2KA}{msL}\Delta \theta = \frac{2KA}{\Delta \theta} dt$. Here, $A\theta$ which
is driving the forward process of heat transfer while $(\theta_{A} - \theta_{a})$ becomes pre-transfer constant and hence
 $\frac{d(\theta_{a} - \theta_{a})}{dt} = 0$. Accordingly integrating the equation in its last form
 $\frac{\theta_{a} - \theta_{a}}{\theta_{a}} = -\frac{2KA}{msL}\int_{0}^{t} dt \Rightarrow \left[\ln A\theta\right]_{\theta_{a} - \theta_{a}}^{\theta_{a} - \theta_{a}} = -\frac{2KA}{msL}t$. It further solves into
 $\frac{2KA}{A} t = -\left[\ln\left(\frac{\theta_{A} - \theta_{a}}{2}\right) - \ln(\theta_{b} - \theta_{a})\right] \Rightarrow t = \frac{msL}{2KA}\left[\ln(\theta_{b} - \theta_{a}) - \ln\left(\frac{\theta_{a} - \theta_{a}}{2}\right)\right]$. On its final form
 $t = \frac{msL}{2KA} \ln 2$. Hence answer is $\frac{msL}{2KA} \ln 2$ s.
N.B.: In this case choice between $\Delta\theta$ and $\Delta\theta$ as discussed above is important as it changes the
characteristic of the equation
from mass m_{a} to m_{a} and the prevature of mass m_{a} falts
 $\frac{dQ}{dt} = \frac{m_{a}s_{a}(\frac{dT}{dt})}{dt} = \frac{KA(T_{a} - T_{a})}{L} = T_{a}^{-T} T_{a} - \frac{KA}{msL}(T_{a}^{-T}) dt$. It becomes $m_{a} = T_{a} - T_{a}^{-T} - \frac{KA}{msL}(T_{a}^{-T}) dt$. It becomes the $\frac{dQ}{dt} = \frac{m_{a}s_{a}(T_{a}^{-T})}{dt} = \frac{KA(T_{a}^{-T})}{L} = T_{a}^{-T} - T_{a}^{-T} - \frac{KA}{msL}(T_{a}^{-T}) dt$. The equation $\frac{dQ}{T} = \frac{m_{a}s_{a}(T_{a}^{-T})}{dt} = T_{a}^{-T} - T_{a}^{-$

	Differentiating this equation w.r.t. t we get $\frac{d\Delta T'}{dt} = -\frac{KA}{L} \left(\frac{m_1 s_1 + m_2 s_2}{m_1 m_2 s_1 s_2}\right) \Delta T' \Rightarrow \frac{d\Delta T'}{dt} = -\lambda \Delta T'$, here
	$\lambda = \frac{KA}{L} \left(\frac{m_1 s_1 + m_2 s_2}{m_1 m_2 s_1 s_2} \right) \text{On separating the variables } \frac{d\Delta T'}{\Delta T'} = -\lambda dt \text{ . Here , } \Delta T \text{ which is driving the}$
	forward process of heat transfer while $\Delta T = (T_2 - T_1)$ becomes pre-transfer constant and hence
	$\frac{d(T_2 - T_1)}{dt} = 0.$ Accordingly, on integration of the equation in its final form we get
	$\int_{T_2-T_1}^{T_{2t}-T_{1t}} \frac{d\Delta T}{\Delta T} = -\lambda \int_0^t dt \Rightarrow \left[\ln \Delta T'\right]_{T_2-T_1}^{T_{2t}-T_{1t}} = -\lambda t \Rightarrow \ln \frac{T_{2t}-T_{1t}}{T_2-T_1} = -\lambda t \Rightarrow T_{2t} - T_{1t} = \left(T_2 - T_1\right)e^{-\lambda t}.$ Hence
	answer is $(T_2 - T_1)e^{-\lambda t \cdot 0}\mathbf{C}$, here $\lambda = \frac{KA}{L} \left(\frac{m_1 s_1 + m_2 s_2}{m_1 m_2 s_1 s_2}\right)$
	N.B.: In this case choice between ΔT and ΔT 'as discussed above is important as it changes the characteristic of the equation
I-54	Rate of heat transfer through conducting surface and , using given data is , at any
	instant when temperature of gas in cylinder is T , then
	$\frac{dQ}{dr} = \frac{KA\Delta\theta}{dr} \Rightarrow \frac{dQ}{dr} = \frac{KA(I_{\theta} - I)}{(1)} \dots (1)$
	dt l dt x
	Since gas is monatomic and hence, $U = n \frac{3}{2} RT$, therefore
	$\frac{dU}{dt} = n\left(\frac{3}{2}R\right)\frac{dT}{dt} \Rightarrow \frac{dU}{dt} = nC_v \left.\frac{dT}{dt}\right _{C_v = \frac{3}{2}R}$. Since pressure in the gas is balanced
	by atmospheric pressure p_{θ} , therefore heat transfer from conducting base shall Area and Conductivity
	utilized in constant pressure process therefore $\frac{dQ}{dr} = nC_p \frac{dT}{dt}(2)$
	Further $C_p = C_V + R = \frac{3}{2}R + R = \frac{5}{2}R$.
	Accordingly combining eqn (1) and (2) alongwith value of $C_p = \frac{5}{2}R$ the equation is rewritten as
	$\frac{dQ}{dr} = nC_p \frac{dT}{dt} \Rightarrow \frac{KA(T_{\theta} - T)}{x} = \frac{5}{2}nR\frac{dT}{dt} \Rightarrow \frac{dT}{(T_{\theta} - T)} = \frac{2KA}{5nRx}dt$. On integrating the equation we get
	$\int_{T_{\theta}-T_{0}}^{T_{\theta}-T} \frac{dT}{\left(T_{\theta}-T\right)} = \frac{2KA}{5nRx} \int_{0}^{t} dt \Rightarrow \left[\ln\left(T_{\theta}-T\right)\right]_{T_{\theta}-T_{0}}^{T_{\theta}-T} = -\frac{2KA}{5nRx} t \Rightarrow \ln\frac{\left(T_{\theta}-T\right)}{\left(T_{\theta}-T_{0}\right)} = -\frac{2KA}{5nRx} t \Rightarrow \frac{\left(T_{\theta}-T\right)}{\left(T_{\theta}-T_{0}\right)} = e^{-\frac{2KA}{5nRx}t}.$
	This leads to $T = T_0 - (T_0 - T_0)e^{-\frac{2KA}{5nR_x}t}$. Further as per Ideal Gas Equation $pV = nRT \Rightarrow p\Delta V = nR\Delta T$.
	Thus in the given case combining IGL and temperature of gas enclosed in an isobaric process is
	$p_{\theta}A\Delta l = nR\left(T - T_{0}\right) \Longrightarrow \Delta l = \frac{nR}{p_{\theta}A}\left[\left(T_{\theta} - \left(T_{\theta} - T_{0}\right)e^{-\frac{2KA}{5nR_{x}}t}\right) - T_{0}\right) \Longrightarrow \Delta l = \frac{nR}{p_{\theta}A}\left(T_{\theta} - T_{0}\right)\left(1 - e^{-\frac{2KA}{5nR_{x}}t}\right).$
	Thus answer is $\frac{nR}{P_a A} (T_{\theta} - T_0) \left(1 - e^{-\frac{2kAt}{5Rnx}} \right)$

	N.B.: This is again a case of integration of concepts.
I-55	As per Stefan's Law of heat radiation $\frac{dQ}{dt} = A\sigma T^4$. Accordingly using the given data
	$\frac{dQ}{dt} = 1.6 \times (6.0 \times 10^{-8}) \times (273 + 37)^4 = 887 \text{J.s}^{-1}. \text{ Hence answer is 887 J}$
	N.B.: In Stefan's Law temperature is taken in Kelvin and hence necessary conversion is done.
I-56	As per Stefan's Law of heat radiation $\frac{dQ}{dt} = Ae\sigma T^4$. Accordingly using the given data
	$\frac{dQ}{dt} = (12 \times 10^{-4}) \times 0.80 \times (6.0 \times 10^{-8}) \times (273 + 20)^4 = 0.42 \text{ J.s}^{-1}.$ Hence answer is 0.42 J N.B.: In Stefan's Law temperature is taken in Kelvin and hence necessary conversion is done.
I-57	Surface area of the aluminum sphere is $S_{Al} = 4\pi R^2$ and copper sphere is $S_{Cu} = 4\pi (2R)^2 = 16\pi R^2$. As per
	Stefan's Law of heat radiation $\frac{dQ}{dt} = Ae\sigma T^4$. Since, both the sphere are heated to same temperature and
	hence $\frac{dQ_{Al}}{dt} = (4\pi R^2)e\sigma T^4$ and $\frac{dQ_{Cu}}{dt} = (16\pi R^2)e\sigma T^4$.
	Part (a): The required ratio is $\frac{dQ_{Al}}{dt} = \frac{(4\pi R^2)e\sigma T^4}{1} = \frac{1}{4}$ Hence answer is 1:4
	$\frac{dQ_{Cul}}{dt} = (16\pi R^2)e\sigma T^4 = \frac{1}{4}$
	Part (b): Rate of fall of temperature is $\frac{dQ}{dt} = ms\frac{d\theta}{dt} \Rightarrow \frac{d\theta}{dt} = \frac{1}{ms} \times \frac{dQ}{dt}$. Therefore, the required ratio is
	$\left \frac{\frac{d\theta_{Al}}{dt}}{\frac{d\theta_{Cu}}{dt}} = \frac{\frac{1}{m_{Al}s_{Al}}}{\frac{1}{m_{Cu}s_{Cu}}} \times \frac{\frac{dQ_{Al}}{dt}}{\frac{dQ_{Cul}}{dt}} = \frac{1}{\frac{4}{3}\pi R^{3}\rho_{Al}s_{Al}} \times \frac{\frac{4}{3}\pi (2R)^{3}\rho_{Cu}s_{Cu}}{1} \times \frac{1}{4} = 8 \times \frac{3.4}{1} \times \frac{390}{900} \times \frac{1}{4} = 2.9. \text{ Hence ratio}$
	of rate of cooling is 2.9:1.
I-58	As per Stefan's law $\frac{dQ}{dt} = Ae\sigma T^4$. Power of the bulb is rate of heat radiation and accordingly with the
	given data $100 = (2\pi rl) \times 0.8 \times (6.0 \times 10^{-8}) T^4 \Rightarrow T = \sqrt[4]{\frac{100}{(2 \times \pi \times (4 \times 10^{-5}) \times 1.0) \times 4.8 \times 10^{-8}}}$. This solves
	to $T = \sqrt[4]{8.3 \times 10^{12}} = 1.7 \times 10^3 = 1700$ K. Hence answer is 1700 K.
I-59	As per Stefan's heat absorption by the ball is $\frac{dQ}{dt} = A\sigma T^4$, and using the given data ppp
	$\frac{dt}{dt} = (20 \times 10^{-4}) \times (6 \times 10^{-8}) \times (273 + 57)^4 = 1.2 \times 10^{-10} \times (3.30 \times 10^2)^4 = 1.4 \text{ J.s}^{-1}.$ Thus answer of part
	(a) is 1.4 J. When temperature of the ball is 200° C in the same environment then net rate of heat flow

	$\frac{dQ}{dt} = \frac{dQ_{\text{ems}}}{dt} - \frac{dQ_{\text{abs}}}{dt} = A\sigma \left(T_{ball}^4 - T_{amb}^4\right); \text{ assume } e = 1 \text{ and } a = 1 \text{ . Using the results From part (a)}$
	$\frac{dQ}{dt} = 1.2 \times 10^{-10} \left(\left(5.73 \times 10^2 \right)^4 - \left(3.3 \times 10^2 \right)^4 \right) = 1.2 \times \left(\left(4.73 \right)^4 - \left(3.3 \right)^4 \right) \times 10^{-2} = 4.58 \text{J.s}^{-1}.$ Since ball is at
	higher temperature and therefore heat radiation is from the ball.
	N.B.: This is a case of superimposition of emissivity and absorptivity. Assume absorptivity $(a = 1)$ and
	emissivity $(e = 1)$ since these values are not given.
I-60	In the problem radius of spherical tungsten piece is 1 cm and hence its surface area
	$A = 4\pi r^2 = 4 \times 3.14 \times (1 \times 10^{-2})^2 = 12.56 \times 10^{-4}$. As per Stefan's law $\frac{dQ_{\text{ems}}}{dt} = Ae\sigma T^4$. Thus with the
	given data $\frac{dQ_{\text{ems}}}{dt} = (12.56 \times 10^{-4}) \times 0.30 \times (6.0 \times 10^{-8}) (10^3)^4 = 22.6 \text{ W}$. At the same time haet absorbed by
	the spherical piece as per Stefan's law is $\frac{dQ_{abs}}{dt} = A\sigma T^4 = (12.56 \times 10^{-4}) \times (6.0 \times 10^{-8}) (3.0 \times 10^2)^4 = 0.02$
	p. Therefore, heat required to maintain temperature of the ball at 1000 K is
	$\frac{dQ}{dt} = \frac{dQ_{\text{ems}}}{dt} - \frac{dQ_{\text{abs}}}{dt} \Rightarrow \frac{dQ}{dt} = 22.6 - 0.02 = 22.58 \text{ W}. \text{ This as per SD is } 22 \text{ W}. \text{ Hence answer is } 22 \text{ W}.$
I-61	The block is stated to be emitting radiation like a black body it implies it emissivity $e = 1$ and absorptivity
	$a=1$. Since edge of the cubical block is $l = 5.0$ cm and hence its surface area is $A = 6l^2 = 6 \times 5.0^2 = 150$
	cm ² . Since block is heated to 227°C therefore as per Stefan's Law $\frac{dQ_e}{dt} = A\sigma T_b^4$. Since Stefan's constant is
	$\sigma = 6.0 \times 10^{-8}$ W.m ^{-1.0} K ⁻¹ and temperature of the block in Kelvin is $T = 273 + 227 = 500$ K, this is
	responsible for heat emission by the block. However black being black body, it will absrb heat from ambient
	at temperature $T_a = 273 + 27 = 300$ K. Thus net rate of heat loss by the body is $\frac{dQ}{dt} = \frac{dQ_e}{dt} - \frac{dQ_a}{dt}$. With
	the given data it leads to $\frac{dQ}{dt} = A\sigma (T_b^4 - T_a^4) = (150 \times 10^{-4}) \times (6 \times 10^{-8}) \times (500^4 - 300^4) = 49 \text{ W}(1)$
	Heat contained in the block is $Q = msT \Rightarrow \frac{dQ}{dt} = ms\frac{dT}{dt}$. Using the given data
	$\frac{dQ}{dt} = 1.0 \times 400 \frac{dT}{dt} = 400 \frac{dT}{dt} \dots (2).$ Combining the equations (1) and (2),
	$4.0 \times 10^2 \frac{dT}{dt} = 49 \Longrightarrow \frac{dT}{dt} = \frac{49}{4.0 \times 10^2} = 0.12 \ ^0\text{C.s}^{-1}$. Hence answer is 0.12^{0}C.s^{-1}
I-62	As per Stefan's Law net rate of heat emission of a body having emissivity e is $\frac{dQ}{dt} = eA\sigma(T_b^4 - T_a^4)$. Here,
	$\sigma = 6.0 \times 10^{-8}$ W.m ^{-1.0} K ⁻¹ is Stefan's constant, $T_b = 500$ K is temperature of heat emitting body and
	$T_a = 300 \mathrm{K}$ is ambient temperature. With the given data, for the bare copper surface of the sphere
	$\frac{dQ_{Cu}}{dt} = eA\sigma (500^4 - 300^4) \Longrightarrow 210 = 544eA\sigma \dots (1).$ When surface of sphere is blackened $e = 1$ the net rate
	of heat emission is $\frac{dQ_{\text{Black}}}{dt} = 1 \times A\sigma (500^4 - 300^4) \Longrightarrow 700 = 544A\sigma \dots (2).$

	Combining the two equations $\frac{210}{700} = \frac{544eA\sigma}{544A\sigma} \Rightarrow e = \frac{210}{700} = 0.3$. Hence answer is 0.3
I-63	As per heat emitted by a black body is $\frac{dQ}{dt} = A\sigma T^4$.
	Part (a): Therefore heat emitted by spherical ball A is $\frac{d\mathcal{L}_A}{dt} = (20 \times 10^{-4}) \times (6.0 \times 10^{-8}) \times 300^4 = 0.97 \text{ J}.$
	Thus answer of part (a) is 0.79 J Part (b): Heat emitted by inner surface of hollow spherical shell B is $\frac{dQ_B}{dt} = (80 \times 10^{-4}) \times (6.0 \times 10^{-8}) \times 300^4 = 3.9 \text{ J}.$ Thus answer of part (a) is 2.9 J Part (c): Heat emitted by
	outer surface of ball A and inner surface of shell B are unequal as derived at (a) and (b) above. Thus $\frac{d\Delta Q}{dt} = \frac{dQ_B}{dt} - \frac{dQ_A}{dt}$ But, the temperatures of both A and B are at 300 K, This is possible only when excess
	heat emitted by shell B is returned. Accordingly, $\frac{d\Delta Q}{dt} = 3.9 - 0.97 = 2.93$ J. Thus considering SDs the
	ans wer of part (c) is 2.9 J. Thus answer of each part is (a) 0.97 J (b) 3.0 J (c) 2.9 J
I-64	As per Stefan's Law in the given case $\frac{dQ}{dt} = Ae\sigma(T_2^4 - T_1^4) = A\sigma(T_2^4 - T_1^4)$, since for blackened surface
	$e = 1$ and temperatures are in Kelvin and hence $T_2 = 273 + 27 = 300$ K and $T_1 = 273 + 17 = 290$ K.
	Accordingly as per given data $\frac{dQ}{dt} = A\sigma T^4 = (1 \times 10^{-4}) \times (6.0 \times 10^{-6}) \times (300^4 - 290^4) = 62 \text{ W}.$
	As regards transfer of heat through rod with its sides outside chamber thermally insulated
	$\frac{dQ}{dt} = \frac{KA\Delta T}{L} = \frac{K \times (1.0 \times 10^{-1}) \times (17 - 0)}{50 \times 10^{-2}} = 3.4 \times 10^{-3} \times K$ W. In state of steady state both the rate of heat
	transfer are equal and hence $3.4 \times 10^{-3} \times K = 62 \implies K = \frac{62}{3.4} \times 10^3 = 1.8 \times 10^3 \text{ W.m}^{-1.0} \text{C}^{-1}$. Hence answer is
	$1.8 \times 10^2 \text{W.m}^{-1.0} \text{C}^{-1}.$
I-65	As per Stefan's Law in the given case rate of heat radiation is $\frac{dQ_R}{dt} = Ae\sigma T_2^4 = A\sigma T_2^4$, since end radiating
	heat acts like a black body and hence $e=1$ and temperatures are in Kelvin and given that $T_2 = 800$ and
	$T_1 = 300 \text{ K}$. And rate of heat conduction through rod is $\frac{dQ_c}{dt} = \frac{KA\Delta T}{L} = \frac{KA(T_2 - T_1)}{L}$. In steady state
	$\frac{dQ_R}{dt} = \frac{dQ_C}{dt} \Rightarrow A\sigma T_2^4 = \frac{KA(T_2 - T_1)}{L} \Rightarrow K = \frac{L\sigma T_2^4}{T_2 - T_1}.$ Using the given data
	$K = \frac{0.2 \times (6.0 \times 10^{-6}) \times 800^4}{800 - 300} = 98 \text{ W.m}^{-1} \text{.K}^{-1} \text{. Hence answer as per SDs is 980 W.m}^{-1} \text{.K}^{-1}.$
I-66	As per Newton's Law of Cooling $\frac{dQ}{dt} = -hA(T_t - T_a)$, here <i>h</i> is heat transfer coefficient of the surface, <i>A</i> A
	is the cooling surface area, T_t is temperature of cooling body at any instant and T_a is ambient temperature.
	Amount of heat lost by 100 ml of water on cooling from 40° C to 35° C in $t_w = 5$ minutes is

	$\Delta Q_W = ms\Delta T = V \rho_W S_W \Delta T$. Density of water $\rho_W = 1000 \text{ kg.m}^{-3}$ and hence with given data
	$\Delta Q_w = (100 \times 10^{-6}) \times 1000 \times 4200 \times (40 - 35) = 2.1 \times 10^3$ cal. Let t is the time taken by the given K-oil in
	cooling under similar conditions then $\Delta Q_{\kappa} = (100 \times 10^{-6}) \times 800 \times 2100 \times (40 - 35) = 8.4 \times 10^{2}$ Since
	cooling surface is identical and hence cooling rates shall also be the same accordingly
	$\Delta Q_W = \Delta Q_K \Rightarrow t_{W} = \Delta Q_K t_{W}$. Therefore the given data and derived values $t_W = \frac{840}{5} \times 5 = 2$ min. Hence
	$t_W = t_K = \Delta Q_W$ is therefore the given data and derived values $t_K = 2100^{-10}$
	answer is 2 min.
I-67	As per Newton's Law of Cooling $\frac{dQ}{dt} = -hA(T_t - T_a)$, here <i>h</i> is heat transfer coefficient of the surface, <i>A</i> A
	is the cooling surface area, T_t is temperature of cooling body at any instant and T_a is ambient temperature.
	Heat lost by body in cooling from temperature T_1 to T_2 under ambient temperature is
	$\Delta Q_{1-2} = ms\Delta T = ms(T_1 - T_2) = ms(50 - 45) = 5 \text{ ms}$ and cooling further from temperature T_2 to T_3 under
	ambient temperature is $\Delta Q_{2,2} = ms\Delta T = ms(T_2 - T_2) = ms(45 - 40) = 5ms$. Therefore, with the given
	$\begin{pmatrix} dQ \end{pmatrix} 5ms \begin{pmatrix} dQ \end{pmatrix} 5ms 5$
	data rate of cooling in first case is $\left(\frac{dQ}{dt}\right)_1 = \frac{5ms}{5} = ms$ and in second case is $\left(\frac{dQ}{dt}\right)_2 = \frac{5ms}{8} = \frac{5}{8}ms$. But, as
	per for applying Newton's Law of Cooling we shall take average temperature which in first case is 50 ± 45
	$T_{1_avg} = \frac{50 + 45}{2} = 47.5$ °C, while in case 2 it is $T_{1_avg} = \frac{43 + 40}{2} = 42.5$ °C.
	Accordingly, as per Newton's Law of cooling in first case $\left(\frac{dQ}{dt}\right)_{1-\text{NLC}} = -hA(47.5 - T_a)$ and in second case
	$\left(\frac{dQ}{dt}\right)_{2-\mathrm{NLC}} = -hA(42.5 - T_a) \ .$
	Taking ratios of rate of cooling $\frac{\frac{dQ_1}{dt}}{\frac{dQ_2}{dt}} = \frac{\left(\frac{dQ}{dt}\right)_{1-\text{NLC}}}{\left(\frac{dQ}{dt}\right)_{2-\text{NLC}}} \Rightarrow \frac{ms}{\frac{5}{8}ms} = \frac{-hA(47.5 - T_a)}{-hA(42.5 - T_a)}$. Solving the equation we
	get $8(42.5-T_a) = 5(47.5-T_a) \Longrightarrow (8-5)T_a = 8 \times 42.5 - 5 \times 47.5 = 34$ °C. Hence answer is 34°C.
I-68	40
1 00	As per Newton's Law of cooling $\frac{dQ}{dt} = k(T - T_a)$, here constant k is same in both the cases with different
	contents in calorimeter. Further temperature fall in both the cases is from 50° C to 45° C which leads to same
	average temperature $T = \frac{50+45}{2} = 47.5^{\circ}$ C of the cooling object, as well as ambient temperature is also
	same.
	Another concept involved in the problem is Water equivalent of calorimeter, this is derived from amount of heat gained or lost by a substance of mass $m \text{ kg} = s \text{ cal.kg}^{-1} \cdot 0 \text{ C}^{-1}$ specific heat and ^{0}C change of temperature.
	Since specific heat of water in CGS is 1 cal.g ⁻¹ .0C ⁻¹ , while all other substances have their specific heat
	different from it and there for $S = ms$ is called Heat capacity of the object and is also terms as water
	equivalent of the object. Accordingly for calorimeter it is designated as S_c . In instant case copper being good
	conductor of neat and nence both water and copper would be at same temperature and in transfer of heat total heat capacity in case 1 shall be $S_1 = S_2 + S_2$, and in case 2 it shall be $S_2 = S_2 + S_2$
	near cupacity in case 1 shall be $S_1 = S_C + S_{W1}$ and in case 2 it shall be $S_2 = S_C + S_{W2}$

	Now taking both the cases separately –
	Case 1: $S_{W1} = (50 \times 10^{-3}) \times (1 \times 10^{3}) = 50$ and hence rate of loss of heat from the given data will calculate to
	$\frac{dQ_1}{dt} = \frac{\left(S_C + S_{W1}\right)\left(T_i - T_f\right)}{t_1} = \frac{\left(S_C + 50\right) \times (50 - 45)}{10 \times 60} = \frac{1}{120}\left(S_C + 50\right)$
	Case 2: $S_{W2} = (100 \times 10^{-3}) \times (1 \times 10^{3}) = 100$ and hence rate of loss of heat from the given data will calculate
	to $\frac{dQ_2}{dt} = \frac{\left(S_C + S_{W2}\right)\left(T_i - T_f\right)}{t_2} = \frac{\left(S_C + 100\right) \times (50 - 45)}{18 \times 60} = \frac{1}{12 \times 18} \left(S_C + 10\right)$
	As discussed with NLC, since rate of cooling is same at and hence equating rate of colling in both the cases
	$\frac{dQ_1}{dt} = \frac{dQ_2}{dt} \Longrightarrow = \frac{1}{120} (S_c + 50) = \frac{1}{12 \times 18} (S_c + 100) \Longrightarrow 18S_c + 900 = 10S_c + 1000 \Longrightarrow 8S_c = 100 . \text{It}$
	solves into water equivalent of calorimeter $S_c = 12.5$ g. Hence answer is 12.5 g.
I-69	Given that a metal ball of mass $m=1$ kg is heated by means of a heater of 20W in a room at 20 ^o C, the temperature of the ball, rises to 50 ^o C. This question is split in Four parts –
	Part (a): At steady state when temp of ball is 50°C the rate of supply of heat $\frac{dQ_s}{dt} = 20$ W is equal to rate of
	loss of heat $\frac{dQ_L}{dt}$ and hence $\frac{dQ_L}{dt} = \frac{dQ_S}{dt} = 20$ W. Hence answer of part (a) is 20 W.
	Part (b): Rate of loss of heat when ball is at 30°C, as per Newton's Law of cooling, $\frac{dQ_T}{dt} = k(T - T_a)$
	accordingly at rate of cooling at 50°C would be $\frac{dQ_{50}}{dt} = k(50-20) = 30k$ and at 30°C it would be
	$\frac{dQ_{30}}{dt} = k(30-10) = 10k$. Since, cooling object is same and hence would be same in both the cases,
	moreover, rate of loss of heat at 50°C is $\frac{dQ_{50}}{dt} = k(T - T_a) = 20$ Watts, as determined in part (a). Hence,
	therefore, $\frac{\frac{dQ_{30}}{dt}}{\frac{dQ_{50}}{dt}} = \frac{10k}{30k} \Rightarrow \frac{dQ_{30}}{dt} = \frac{1}{3} \times \frac{dQ_{50}}{dt} = \frac{20}{3}$ W. Hence answer of part (b) is $\frac{20}{3}$ W.
	Part (c): When Ball is at 20 ^o C, temperature difference with ambient $\Delta T = 0$, and as per NLC all the heat is
	absorbed by the body and there is no loss of heat i.e. there is no loss of heat or $\frac{dQ_{20}}{dt} = 0$ W and atpart (b) it
	has been derived that $\frac{dQ_{30}}{dt} = \frac{20}{3}$ W. It is given that temperature of the ball rises uniformly, as against NLC,
	and heat input is constant at 20 W. Hence average heat loss would be $\frac{dQ_{avg}}{dt} = \frac{\frac{dQ_{20}}{dt} + \frac{dQ_{30}}{dt}}{2} = \frac{0 + \frac{20}{3}}{2} = \frac{10}{3}$
	W. Therefore amount of heat loss in 5 minutes to raise temperature of ball from 20° C to 30° C is
	$Q_L = \frac{dQ_{avg}}{dt} \times t = \frac{10}{3} \times 5 \times 60 = 1000 \text{ J. Hence answer of Part (c) is 1000 J.}$
	Part (d): As per energy balance equation $Q_s = Q_A + Q_L$. The ball is being heated by means of heater of
	power $P = 20$ and hence in 5 minutes heat supplied is $Q_s = W \times t = 20 \times 5 \times 60 = 6000$ J and hence heat

	absorbed by the ball is $Q_A = Q_S - Q_L = 6000 - 1000 = 5000 \text{ J}.$
	Further heat absorbed by a body for rise of temperature ΔT is $Q_A = ms\Delta T$, with given data and value of Q_A
	derived above, $5000 = 1 \times s \times (30 - 20) \Longrightarrow s = \frac{5000}{10} = 500 \text{ J.kg}^{-1.0} \text{C}^{-1}$. Thus answer of part (d) i.e. specific
	of the ball is 500 $J.kg^{-1}.K^{-1}$.
	Thus part wise answers are (a) 20 W (b) $\frac{20}{3}$ W (c) 1000 J (d) 500 J.kg ⁻¹ .K ⁻¹
I-70	Rate of rise of temperature of metal block of heat capacity $S = 80 \text{ J.}^{0} \text{ C}^{-1}$, heated by heater of power say $P \text{ W}$ is $dT_{20} = 2^{0} \text{ C} \text{ s}^{-1}$. Therefore, $AQ = SAT \implies dQ_{20} = S dT_{20}$ accordingly, $n = dQ = 80 \times 2 = 160 \text{ W}$. Thus
	dt dt dt dt dt dt dt
	answer of part (a) is 160 W.
	When heater is switched off at 30 [°] C, the rate of fall of temperature is $\frac{dI_{30}}{dt} = -0.2 \text{ J.}^{\circ}\text{C}^{-1}$; here (-)ve sign is
	attributed to rate of fall of temperature. At this instance there is no supply of heat and hence fall of
	temperature is due to radiation $\frac{dQ_{30}}{dt} = -S \frac{dI_{30}}{dt} = -80 \times (-0.2) = 16$ W. Thus is part (b) of the answer is
	16 W.
	As per Newton's Law of Cooling rate of loss of heat $\frac{dQ}{dt} = k(T_t - T_a)$, here k is heat transfer coefficient of
	the surface T_t is temperature of cooling body at any instant and T_a is ambient temperature. In part (b) it is
	derived that $\frac{dQ_{30}}{dt} = 16 = k(30 - 20) \Longrightarrow k = \frac{16}{10} = 1.6$. Therefore, $\frac{dQ_{25}}{dt} = 1.6(25 - 20) = 8$ W. Thus
	answer of part (c) is 8W.
	It is assumed that $\frac{dQ_{25}}{dt} = 8$ W is the average rate of heat radiation, and, therefore, heat balance equation for
	the metal block to attain 30°C is $P \times t = \frac{dQ_{25}}{dt} \times t + S\Delta T \Longrightarrow \left(P - \frac{dQ_{25}}{dt}\right)t = 80 \times (30 - 20) = 800$. Using
	value of $P = 160$ W and $\frac{dQ_{25}}{dt} = 8$ W determined at part (a) and (c) of the problem above $t = \frac{800}{160 - 8} = 5.3$
	s. Hence answer of part (d) is 5.3 s.
I-71	As per Zero th Law of Thermodynamics in state of thermal equilibrium there is no transfer of heat, and further transfer of heat continues from hotter body to cooler body as long as there is temperature difference between
	two bodies exist. Therefore, heat maximum loss by a body at temperature θ_1 in an ambient temperature θ_0 is
	$\Delta Q = ms\Delta t = ms(\theta_1 - \theta_0).$ Hence answer to part (a) is $ms(\theta_1 - \theta_0).$
	Given that as per Newton's Law of cooling $\frac{d\theta}{dt} = -k(\theta - \theta_0)$. When body losses 90% of the maximum
	determined as part (a) of the answer the remaining heat would be 10% and therefore,
	$\frac{Q_{10}}{Q_{100}} = \frac{ms(\theta - \theta_0)}{ms(\theta_1 - \theta_0)} \Longrightarrow \frac{10}{100} = \frac{(\theta - \theta_0)}{(\theta_1 - \theta_0)} \Longrightarrow \theta = \theta_0 + 0.1 \times (\theta_1 - \theta_0) = 0.1 \times \theta_1 + 0.9 \times \theta_0.$
	On integrating equation of NLC it leads to $\int_{\theta_1-\theta_0}^{\theta-\theta_0} \frac{d\theta}{(\theta-\theta_0)} = -k \int_0^t t \Longrightarrow kt = -\ln\left(\frac{\theta_0 - (0.1\theta_1 + 0.9\theta_0)}{\theta_1 - \theta_0}\right).$ It

solves into
$$\Rightarrow kt = -\ln\left(\frac{1}{10}\right) \Rightarrow kt = \ln 10 \Rightarrow t = \frac{\ln 10}{k}$$
. Hence answer of part (b) is $\frac{\ln 10}{k}$.
Thus part-wise answers are (a) $ms(\theta_1 - \theta_0)$ (b) $\frac{\ln 10}{k}$
 θ
N.B. In this case integral on the L.H.S is w.r.t. while the variable is occurring as . ($\theta - \theta_0$)
requires to use limits accordingly which has been $\theta\theta$ ine in the illustration.

__00___