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Chapter-VI: Waves and Motion 

Discovery of correlation between matter and energy has revolutionized understanding of nature. Waves form an 

indispensable coupling between matter and energy and define boundaries of classical mechanics vis-à-vis relativistic and 

quantum mechanics. This chapter is, accordingly, positioned in this manual after classical mechanics and heat where 

existence of waves was introduced. Starting with concept of waves, this chapter is intended to integrate SHM, with concepts 

of sound and light, which are manifestation of waves in different frequency domain. While elaborating the subject matter 

electro-magnetic nature of waves is left untouched; it would be incomprehensible without knowledge of electro-magnetism 

and vector calculus.  

Propagation of sound and light through a medium was initially considered to be motion of particles from source to destination. It was 

Christian Huygens in 1678 who proposed that rectilinear propagation 

of light, which was substantiated by Augustine-Jean Fresnel in 1816 

with his own theory to explain phenomenon of interference in light. 

The Huygens Wave Theory (HWT) is explained with a set of 

postulates that – a) light travels like propagation of wave away from 

the source, b) the propagation is in the forms of a spherical  wave-front 

in three dimensions in space. Wave travels with a uniform velocity in a 

homogenous medium, c) every point on the wave-front acts like a 

secondary source of wave and it perpetuates secondary wave-front, d) 

Envelop of Secondary wave-fronts regenerates new wave-front which 

propagates like the primary wave-front.  

The concept of wave-front  can be best visualized by throwing a stone 

in a pond or lake and then observing waves so generated propagate 

towards its bank. Postulates of wave propagation propounded by HWT 

successfully explains phenomenon of reflection and refraction. Further, 

concept of superimposition of waves is used to explain interference 

and diffraction phenomenon.  

Generation of secondary wave-fronts is explained by taking Four points on a primary wave-front that has travelled some distance as 

shown in the figure. As we proceed into the journey, use of HWT shall be made while elaborating the above phenomenon. 

Simple Harmonic Motion (SHM): This is a simple extension of mechanics and very useful in analysis of waves. It would be no 

exaggeration to state that the SHM is fundamental and most natural motion. Any periodic motion or vibration, which is also called 

oscillation, can be explained with its constituent SHMs. This was established by a mathematician Joseph Fourier in 1807, known as 

Fourier Analysis. It is a subject matter of higher studies, and hence its elaboration at this point is limited to mere reference without 

much of details. Nevertheless, keen readers are welcome to connect through Contact Us. 

The SHM is best explained with trace of a particle, along a diameter of a circle, which is performing a uniform circular motion along 

perimeter of the circle i.e. with a constant angular velocity 𝝎. It will be seen that in that – a) acceleration on the the particle 

performing SHM is always directed towards its mean position i.e. of equilibrium, and b) the acceleration is always proportional to the 

displacement of particle from its mean position. These two considerations form premises of SHM and are departure from Galileo’s 

Equation of motion where acceleration was considered to be uniform.  

This can be compared with motion of a pendulum or vibration in a spring for a real life visualization so as to appreciate SHM. In 

respect of oscillation of pendulum and spring, certain assumptions are involved, while motion of trace of a particle performing 

circular motion is an ideal SHM and trace of a particle corresponding to time is represented mathematically as siny A t , here y 

is displacement of particle from mean position at any instant of time t, A is amplitude i.e,. maximum displacement from mean position 

of particle during motion and  is uniform angular velocity of the particle. Graphically SHM is with sinusoidal waveform which will 

be elaborated a little later. Accordingly the three types of motions are compared for analysis in the table below. 
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Motion of Trace of a Particle 
Performing Circular Motion 

Oscillation of Pendulum Oscillation of a Mass attached 
to Spring 

 
 

A particle is performing uniform circular motion of 

radius A, at 𝝎 rad/sec. If a parallel source of light is 

placed such that its rays cast a shadow on Y-axis. Thus 

at any instance displacement of the shadow from origin 

O, the mean position, on y-axis is : 𝑦 = 𝐴 sin 𝜃 

Velocity of the trace: 𝑣 =
𝑑𝑦

𝑑𝑡
=

𝑑

𝑑𝑡
 A ∙ sin 𝜃  

 𝐴 ∙
𝑑

𝑑𝜃
sin 𝜃 ∙

𝑑𝜃

𝑑𝑟
= 𝐴𝜔 cos 𝜃 

Acceleration of the particle: 𝑎 =
𝑑𝑣

𝑑𝑡
=

𝑑

𝑑𝑡
 𝐴𝜔 cos 𝜃  

 −𝐴𝜔2 sin 𝜃 = −𝜔2𝑦;  𝑎 ∝ 𝑦 

 

This too complies with both the premises of SHM i.e. 

(i) acceleration on the mass is proportional to the 

displacement, and (ii) acceleration is in direction 

opposite to the displacement.  

 

Since this analysis of motion in this form does not 

involve any assumption, as done in case of pendulum 

and spring-mass system, it is ideal representation of 

SHM. 

 
Length of Pendulum = l , and that of arc 

traced by it during oscillation is  𝑃𝑄 =
𝑙𝜃. When 𝜃 is small, or 𝑥 ≪ 𝑙, 

sin 𝜃  → 𝜃 =
Arc 𝑃𝑄

𝑙
≅

𝑃′𝑄

𝑙
 

Force 𝐹 = −𝑚𝑔sinθ = −mg 
𝑃′𝑄

𝑙
= −𝑚𝑔

𝑥

𝑙
 

Acceleration of Mass m is 𝑎 = −  
𝑔

𝑙
 𝑥 . It 

indicates that - (i) 𝑎 ∝ 𝑥 and (ii)  (-)ve sign 

indicates that acceleration is in a direction 

opposite to the displacement 

Both of these observations are in 

conformance with the premises of SHM 

This involves an assumption that 𝜃 is 

small. 

 
Here for a spring of length L, its spring 

constant is k. 

Expansion (𝑙) of a spring caused by a mass 

m suspended from it is: 𝑘𝑙 = 𝑚𝑔;   

Internal force on stretching of the spring by 

additional length (𝑦 ) : 𝐹′ = − 𝑙 + 𝑦 𝑘; 

Net force on the mass m is  :  

                 𝐹” = 𝐹′ + 𝑚𝑔 = 𝑚𝑎 

 𝑚𝑎 = − 𝑙 + 𝑦 𝑘 + 𝑘𝑙 

 𝑚𝑎 = −𝑘𝑦;  𝑎 = −  
𝑘

𝑚
 𝑦;  𝑎 ∝ 𝑥 

This too complies with both the premises 

of SHM i.e. (i) acceleration on the mass is 

proportional to the displacement, and (ii) 

acceleration is in direction opposite to the 

displacement.  

This involves assumption that spring 

constant k remains uniform while 

elongation. 
 

This analysis is being extended to determine Time Period T ,  and velocity of particle v at a particular displacement y, for circular 

motion and applied to oscillation of pendulum and spring 

Displacement of particle from mean position is since a Sine function of angular displacenent , it is also called a Sinusoidal Wave. 

Parameters of Oscillation 

Amplitude -Maximum Displacement : A  
 

 

 

 

 

Max
m

 acceleration is at Maxm Disp. : 2

maxa A  

 

Max
m

 velocity is at Mean position (y=0) : 
maxv A  

Angular velocity : 𝜔 =
Acceleration

Displacement
=  

𝑎𝑚𝑎𝑥

𝐴
;      

                 Also,    𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
. 

Frequency of oscillation (Cycles/Sec): 
2

f



  

 

 

Time period of oscillation :  𝑇 =
1

𝑓
=

2𝜋

𝜔
 

Angular displacement corresponding to Max Dis.:
4

  

Amplitude -Maxm Disp. :
maxsinA l   

                  Maxm angular disp.: max
 

        
max max max maxsin

A

l
        

 

Max
m

 accel
n is at Maxm Disp. :  

max
max max

sin
sin

mg gA g
a g A

m l l


   

Max
m

 vel. at Mean postn.   max0 : v A    

Angular velocity :𝜔 =  
𝑔

𝑙
;    

 

 

Frequency of oscillation (Cycles/Sec): 

                                              1

2

g
f

l
  

Time period of oscil
n:  𝑇 =

1

𝑓
= 2𝜋 

𝑙

𝑔
 

Angular disp. corrpndg. to Max Dis.:
4

  

Amplitude -Maxm Disp. :
maxsinA y     

Maxm corredng angular disp.:
max

2


 

     
maxsin sinF ky ky t F ky kA       

 

 
Max

m
 accel

n is at Maxm Disp. :  

                          

2max
max

F k
a A A

m m
     

Max
m

 vel. at Mean postn.   max0 : v A    

Angular velocity : 𝜔 =  
𝑘

𝑚
   

 

 

Frequency of oscillation (Cycles/Sec): 

                                                  

1

2

k
f

m
                                  

 

 

Time period of oscil
n: 𝑇 =

1

𝑓
= 2𝜋 

𝑚

𝑘
  

Angular disp. corrpndg. to Max Dis.:
4

  
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In the above table motion of pendulum and spring-mass system has been qualitatively compared with ideal SHM. It is possible the 

analytically derive expression of form of SHM from force-displacement relation 

2 2
2

2 2x

d d
F ma m x kx x x

dt dt
       of 

the two systems, a linear differential equation of Second order, and is being derived. Multiply both sides by 2
dx

dt
, the equation 

becomes 

2 22
2 2 2

2
2 2 2 2

dx d dx d dx dx dx
x x x d x dx

dt dt dt dt dt dt dt
  

   
              

   
. On integrating the equation it 

leads to 

2 2

2 2 22
dx dx

d x dx x C
dt dt

 
   

         
   

  . At max0
dx

x v V A
dt

     . Using this limiting 

condition 
2 2C A  . Accordingly,  

2 2

2 2 2 2 2 2 2 2 2dx dx dx
x A A x A x

dt dt dt
   

   
            

   
. Thus the 

problem of Second Order Linear Differential Equation (SOLDE) has been reduced to First Order Linear Differential 

Equation (FOLDE). Integration of the latest form of equation is 
2 2

dx
dt

A x
 


  . On substituting 

sin cosx A dx A d     , the integration becomes 
2

cos

1 sin

A
d t t

A


     


      


  . Reverting 

back to the original variable,  1sin sin
x

t x A t
A

          , here  defines initial condition. Reduction of 

SOLDE to FOLDE has been made simple by mathematician using D operator, a subject matter of mathematics, an 

integral part of physics. Readers more keen to know about D operator to solve higher order differential equations may 

refer to books on Differential Equations or are welcome to reach us through Contact Us. 

It is important to note that at mean position of particle performing SHM all forces are in equilibrium, yet the particle is at maximum 

velocity as per principle of conservation of energy. But, the particle around equilibrium position either while approaching or 

separating from it, experiences acceleration or retardation, respectively in accordance with Newton’ Second Law of Motion. 

Composition of Energy of a particle performing SHM: Taking that particle is performing SHM in frictionless environment, where 

there is exchange of energy with external systems. In such a situation energy of particle shall comprise of Potential Energy (PE) and 

Kinetic Energy (KE), and the two together shall constitute Total Energy (TE) of the Particle. 

As per definition, 𝐾𝐸 =
1

2
𝑚𝑣2 =

1

2
𝑚 𝐴𝜔 cos 𝜃 2 =

1

2
𝑚𝐴2𝜔2 cos2 𝜃, here 𝑣 = 𝐴𝜔. cos 𝜃  is the instantaneous velocity of the 

particle of mass m, 𝑃𝐸 = −  𝑚 ∙ 𝑎 ∙ 𝑑𝑦
𝑦

0
 . It leads to 𝑃𝐸 = −  𝑚 ∙  𝐴𝜔2 sin 𝜃 ∙ 𝑑𝑦

𝑦

0
 since 𝑦 = 𝐴 sin 𝜃, hence 𝑑𝑦 = 𝐴 cos 𝜃𝑑𝜃. For 

convenience limits shall be managed at the last step. Accordingly, 𝑃𝐸 =  𝑚 ∙  𝐴𝜔2 sin 𝜃 ∙  𝐴 cos 𝜃𝑑𝜃 =
𝑦

0
𝑚𝐴2𝜔2  sin 𝜃 cos 𝜃𝑑𝜃

𝑦

0
=

𝑚𝐴2𝜔2

2
 sin 2𝜃 𝑑𝜃

𝑦

0
=  𝑚𝐴2𝜔2

4
 sin 𝑢 𝑑𝑢

𝜃

0
 
𝑢=2𝜃;𝑑𝜃 =

𝑑𝑢

2

. It leads to 𝑃𝐸 =
𝑚𝐴2𝜔2

4
 − cos 𝑢 0

𝜃 =

−
𝑚𝐴2𝜔2

4
 cos 2𝜃 − 1 = −

𝑚𝐴2𝜔2

4
  1 − 2sin2 𝜃 − 1 , where 𝑃𝐸 =

𝑚𝐴2𝜔2

2
sin2 𝜃. Thus, 𝑇𝐸 =

𝑃𝐸 + 𝐾𝐸 =
𝑚𝐴2𝜔2

2
sin2 𝜃 +

𝑚𝐴2𝜔2

2
cos2 𝜃 =

𝑚𝐴2𝜔2

2
. Accordingly, 𝑇𝐸 =

1

2
𝑚𝑉𝑚𝑎𝑥

2 here, 

𝑉𝑚𝑎𝑥 = 𝐴𝜔, which corresponds to tangential velocity of particle performing uniform 

circular motion, while in case of oscillation of  simple pendulum and spring it is velocity of 

particle at the mean position corresponding to 𝜃 = 𝑛𝜋,   where, n Z n, an element of set 

of Whole Numbers, PE is ZERO. 

Oscillations are of various kinds: a) Free Oscillation, where no external force is applied, e.g. trace of trajectory of motion of planets, 

satellites electrons in their orbit, along one of its axes  b) Damped Oscillations, whose amplitude depletes with passage of time e.g. a 

swing left unattended, c) Forced Oscillations, like swing or clock where regular at regular interval, extra energy is supplied to make 
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up energy lost in each oscillation, d) Resonant Oscillations, these occur in a system when its natural frequency is an integral multiple 

of an oscillation present in the environment. This finds extensive application in musical instruments. e) Coupled Oscillation, occur in 

a system which communicates, exchanges, energy with an external system when it is set into oscillation. This principle is widely used 

in sound box, speakers. 

Torsional Pendulum: A shaft or a taught string or wire when twisted axially, it undergoes an elastic 

deformation which beyond yield point leading to shear of the material at its cross-section perpendicular to 

the axis. This deformation can be viewed as deformation of diametric-axial-plane twisted such that fixed end 

remains stationary and twist gradually increases towards free-end to its maximum value. Below this limiting 

condition for a small angular twist undergoes Simple Harmonic Motion. Such a system is called Torsional 

Pendulum as shown in the figure. In this system one end is fixed at ceiling and at its free-end hanging below 

the fixed end a uniform-rigid disc of radius 𝑟 and mass 𝑚 is suspended. Moment of inertia of the disc is 

𝐼 =
𝑚𝑟2

2
 . Let, 𝑘 is the torsional constant of the suspension material.  i.e. torque per unit angle deformation. Therefore, for an angular 

displacement of the disc by an angle 𝜃 the restoring torque exerted on the free end of the suspension varies linearly as 𝜏 = −𝑘𝜃 and 

the torque in terms of rotational dynamics would create an angular acceleration such that 𝜏 = 𝐼𝛼. Equating these two expressions of 

torques it leads to 𝐼𝛼 = −𝑘𝜃 ⇒ 𝛼 = −
𝑘

𝐼
𝜃. This equation is comparable to that of SHM where 𝜔2 =

𝑘

𝐼
⇒ 𝜔 =  

𝑘

𝐼
. Since, we have 

𝜔 =
2𝜋

𝑇
 and hence, 

2𝜋

𝑇
=  

𝐾

𝐼
⇒ 𝑇 = 2𝜋 

𝐼

𝐾
 

An example below illustrates application of the concept of torsional pendulum: 

Question: Two small balls, each of mass m, are connected by a light rigid rod of length L as shown 

in the figure. The system is suspended from its centre by a thin wire of torsional constant k. The rod 

is rotated about the wire through an angle 
0  and released. Find the tension in the rod as the system 

passes through the mean position. 

Illustration: Moment of Inertia of two small balls of mass m separated by a light 

rigid rod of length about its centre O is 𝐼 = 𝑚  
𝐿

2
 

2
+ 𝑚  

𝐿

2
 

2
=

𝑚𝐿2

2
…(1) Torsional 

energy stored in the suspension wire 𝑇𝐸 =
1

2
𝑘𝜃2…(2) and when the rod passes 

through its mean position it will be converted into Kinetic Energy 𝐾𝐸 =
1

2
𝐼𝜔2…(3) 

such that 
1

2
𝐼𝜔2 =

1

2
𝑘𝜃2 → 𝜔 =  

𝑘

𝐼
𝜃…(4). 

The centripetal force on the rod would be 𝐹𝑐 = 𝑚  
𝐿

2
 𝜔2 → 𝐹𝑐 = 𝑚  

𝐿

2
  

𝑘

𝐼
 𝜃2 = 𝑚  

𝐿

2
  𝑘 ×

2

𝑚𝐿2 𝜃2 =
𝑘

𝐿
𝜃2. In addition 

gravitational force of the balls is 𝐹𝑔 = 𝑚𝑔. It is seen from the figure that both  𝐹𝑐  and 𝐹𝑔are orthogonal and both the balls 

are attached to the rod, while being symmetrical to the wire. Hence, resultant force on the rod that supports the balls is 

𝑅 =  𝐹𝑐
2 + 𝐹𝑔

2 =   
𝑘

𝐿
𝜃2 

2
+  𝑚𝑔 2 =  

𝑘2

𝐿2 𝜃4 + 𝑚2𝑔2. Thus answer is  
𝑘2

𝐿2 𝜃4 + 𝑚2𝑔2 

N.B.: Since magnitude of resultant motion is always (+) ve hence correct representation in radical form and not in 

exponential form.
 

Physical Pendulum: This is case of oscillation of physical bodies and can be conceptualized from the 

figure shown here. Let a body of mass m and moment of inertia (MOI) I is hanging from a point O 

such that it is above P, the centre of gravity (CG), by a length l . When it is hanging in a steady state 

its centre of gravity (CG) is at point P. When body is set into oscillation and is inclined by an angle  

with the vertical line passing through O, it will experience a torque 𝜏 = 𝑅𝑄𝑙𝑒𝑛𝑔𝑡 𝑕 × 𝑚𝑔 = −𝑚𝑔𝑙 sin 𝜗. 
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Considering the situation from the point of view of rotational dynamics 𝜏 = 𝐼𝛼.  Combining the two expressions if torque 

𝜏  we get 𝐼𝛼 = −𝑚𝑔𝑙 sin 𝜗. Since for small amplitude oscillation when sin


 


 . Accordingly, 𝐼𝛼 = −𝑚𝑔𝑙𝜃, it 

leads to 𝛼 = −
𝑚𝑔𝑙

𝐼
𝜃. The angular acceleration of the physical body in its final form is comparable to translational SHM 

where 𝑎 = −𝜔2𝑥, where  𝑎 → 𝛼 and 𝑥 → 𝜃 and, therefore, 𝜔2 =
𝑚𝑔𝑙

𝐼
→ 𝜔 =  

𝑚𝑔𝑙

𝐼
=

2𝜋

𝑇
. It leads to = 2𝜋 

𝐼

𝑚𝑔𝑙
 .  

Accordingly, for a physical body  𝛼 = 𝜔2𝜃 …(5) and time period of SHM of any physical body is 𝑇 = 2𝜋 
𝐼

𝑚𝑔𝑙
. …(6).  

This concept has been applied to find time period of oscillation of a physical pendulum in typical cases as shown below : 

Case (a) Uniform Bar: The bar of mass m and  length 𝐿 = 1m is supported at point P. Moment of inertia 

about its centre O is 𝐼 =
𝑚𝐿2

12
=

𝑚

12
. Since the bar is hanging from point P, above by 𝑙 = 0.5 − 0.2 = 0.3m 

and hence moment of inertia of the bar about P, by parallel axis theorem is 𝐼𝑃 = 𝐼 + 𝑚𝑙2, it simplifies into 

𝐼𝑂 =
𝑚

12
+

9𝑚

100
=

52𝑚

300
, therefore time period would be 𝑇 = 2𝜋 

52𝑚

300

𝑚×10×0.3
. It reduces to 

𝑇 = 2𝜋 
52𝑚

300

𝑚×10×0.3
= 2𝜋 

52

900
= 1.51s. Hence 𝑻 = 𝟏. 𝟓𝟏 is 1.51 s. 

Case (b) Circular Ring: A circular uniform ring of radius 𝑟 and mass 𝑚 shall have moment of inertia 

about its centre O is 𝐼 = 𝑚𝑟2 and therefore its MI about point of hanging P is 𝐼𝑃 = 𝐼 + 𝑚𝑟2 = 2𝑚𝑟2. 

Therefore, its time period would be 𝑇 = 2𝜋 
2𝑚𝑟2

𝑚𝑔𝑟
= 2𝜋 

2𝑟

𝑔
. Hence answer of part (b) is 𝑻 =

𝟐𝝅 
𝟐𝒓

𝒈
 s. 

Case (c) Square Plate: In case of a square plate of dimension 𝑎 × 𝑎 having mass 𝑚 hung from one 

of its corner. Using perpendicular axis theorem MI about its center O is 𝑰 =
𝒎𝒂𝟐

𝟏𝟐
+

𝒎𝒂𝟐

𝟏𝟐
=

𝒎𝒂𝟐

𝟔
. 

Accordingly, MA about the point P shall be 𝐼𝑃 =
𝑚𝑎2

6
+ 𝑚  

𝑎

 2
 

2
=

2

3
𝑚𝑎2 . Therefore, time period  

of SHM shall be 𝑇 = 2𝜋 
2

3
𝑚𝑎2

𝑚𝑔  
𝑎

 2
 
. Accordingly, 𝑻 = 𝟐𝝅 

 𝟖𝒂

𝟑𝒈
 s. 

Case (d) Uniform Circular Disc:  The uniform circular disc is taken to be of mass 𝑚 and radius 𝑟. 

The disc is hung at point P on its surface such that the disc will swing like a pan across its surface  

unlike that in case  (b) above. Accordingly, MI about point P is 𝐼𝑃 =
𝐼𝑜

2
+ 𝑚  

𝑟

2
 

2
=

𝑚𝑟2

2
+

𝑚𝑟2

4
=

3𝑚𝑟2

4
. And hence time period 𝑇 = 2𝜋 

3𝑚 𝑟2

4

𝑚𝑔
𝑟

2

= 2𝜋 
3𝑟

2𝑔
. Thus, 𝑻 = 𝟐𝝅 

𝟑𝒓

𝟑𝒈
 s. 

N.B.: In this problem MI of an object about different points of its plane have been very nicely articulated. 

Composite SHM: This case of composite SHM is explained through an example given below - 

Example: Assume that a tunnel is dug across the earth (radius = R) passing through its centre. Find the time a particle 

takes a cover the length of the tunnel if- 

(a) It is projected into the tunnel with a speed of gR , 
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(b) It is released from a height R above the tunnel 

(c) It is thrown vertically upward along the length of tunnel with a speed of gR . 

Illustration: Each case is separately illustrated below : 

In case (a) particle is projected into the tunnel with a speed of 
av gR .  

In case (b) the particle when released from a height 𝑅 above the tunnel i.e, at a distance 2𝑅 from the COM of the earth 

reduction in potential energy is ∆𝑃𝐸 =
𝐺𝑀𝑚

𝑅
−

𝐺𝑀𝑚

2𝑅
=

𝐺𝑀𝑚

2𝑅
=

𝑚𝑔𝑅

2
. Let 𝑣 is the velocity of the particle when 

it reaches tunnel then change of  kinetic energy would be ∆𝐾𝐸 =
1

2
𝑚𝑣𝑏

2 − 0 =
1

2
𝑚𝑣𝑏

2. Accordingly, As per 

Law of Conservation of Energy  
1

2
𝑚𝑣𝑏

2 =
𝑚𝑔𝑅

2
→ 𝑣𝑏 =  𝑔𝑅. 

In case (c) the particle is projected vertically upward with velocity 𝑔𝑅  and therefore, as per Law of Conservation of 

Energy when it enters the tunnel it will have a downward velocity 𝑣𝑐 =  𝑔𝑅, it is similar to that of the case 

(a). 

Thus it is seen that velocity of the particle entering the tunnel in each case 𝑣𝑎 = 𝑣𝑏 = 𝑣𝑐 = 𝑣 =  𝑔𝑅…(1) 

Rest of the problem in each case is same as the tunnel is same. 

Acceleration due to gravity at earth’s surface =
𝐺𝑀

𝑅2 =
𝐺

𝑅2  
4

3
𝜋𝑅3𝜌 =

4

3
𝜋𝐺𝜌𝑅 . Since acceleration due to 

gravity at any point inside earth at a distance x from the earth’s center is due to mass inside the sphere of 

radius x  and not the shell outside it and hence on similar lines 𝑔𝑥 =
4

3
𝜋𝐺𝜌𝑥. Accordingly,

𝑔𝑥

𝑔
=

4

3
𝜋𝐺𝜌𝑥

4

3
𝜋𝐺𝜌𝑅

=
𝑥

𝑅
→

𝑔𝑥 =
𝑔

𝑅
𝑥. 

 

This quantitative relationship can be written with directional sense as 𝑔𝑥 = −
𝑔

𝑅
𝑥…(2). Since acceleration 

vector 𝑔𝑥  is toward the centre of the earth while vector 𝑥 is radially outward. This equation can be compared 

with characteristic equation of  SHM where 𝑎𝑥 = −𝜔2𝑥…(3). Comparing equation (2) and (3) 

𝜔2 =
𝑔

𝑅
→ 𝜔 =  

𝑔

𝑅
 and time period 𝑇 =

2𝜋

𝜔
= 2𝜋 

𝑅

𝑔
…(4) 

 

This is an interesting case of composite motion in Two parts – (a) motion inside the tunnel where 

acceleration is directly proportional to the displacement from mean position and is always 

directed toward the mean position and therefore SHM, (b) motion above the earth’s 

surface where acceleration is inversely proportional to the distance from mean position 

and is always directed toward the mean position and therefore it follows inverse square 

law. This situation is converted into an equivalent SHM by evolving velocity-displacement 

equation (VDE) using the data of motion of the particle along the diametric tunnel.  

In SHM 𝑥 = 𝐴 sin 𝜔𝑡, and velocity 𝑣𝑥 =
𝑑𝑥

𝑑𝑡
= 𝐴𝜔 cos 𝜔𝑡 = 𝐴𝜔 1 − sin2 𝜔𝑡 → 𝑣𝑥 =

𝐴𝜔 1 −  
𝑥

𝐴
 

2
= 𝜔 𝐴2 − 𝑥2…(5); this is being called VDE in simple harmonic motion. 
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At x R , equation (5) leads to 𝑣 = 𝜔 𝐴2 − 𝑅2 accordingly using values of 𝑣 and 𝜔 derived above it leads 

to  𝑔𝑅 =  
𝑔

𝑅
  𝐴2 − 𝑅2 → 𝑅2 = 𝐴2 − 𝑅2 → 𝐴 =  2𝑅. Applying VDE in the instant case𝑣 =

𝐴𝜔 cos 𝜔𝑡 → 𝑣 =   2𝑅 
𝑔

𝑅
 cos   

𝑔

𝑅
𝑡 =  2𝑔𝑅 cos   

𝑔

𝑅
𝑡  . 

 

Accordingly, we have 𝑣𝑝 = 𝐴𝜔 cos 𝜔𝑡𝑝 → − 𝑔𝑅 =  2𝑔𝑅 cos 𝜔𝑡𝑝 → cos 𝜔𝑡𝑝 = −
1

 2
 .or 

2 5 3 3 5
, ,

4 4 4 8 8
p p pt t t T T

T

  
       . Likewise, 𝑣𝑞 = 𝐴𝜔 cos 𝜔𝑡𝑞 , it leads 

to  𝑔𝑅 =  2𝑔𝑅 cos 𝜔𝑡𝑞 → cos 𝜔𝑡𝑞 =
1

 2
, or  

2

4 4 8
p p pt t t

T

   
        . 

Thus, 
3 1 1 1

2
8 8 4 4 2

q p

R R
t t t T T T t

g g




 
          

 
., has been depicted graphically. Hence 

answer is 
2

R

g


. 

Damped Harmonic Oscillation: Simple harmonic motions with constant amplitude discussed above are realized in conservative 

systems. In these systems loss of energy in the process is zero. Such systems are ideal. Yet, experiences of an oscillating pendulum 

coming to rest, unless it is powered, and likewise any oscillating or vibrating object coming to rest is not uncommon. This process of 

an oscillating object is called damping, and such oscillations are called Damped Harmonic Oscillations. It may also be observed 

that faster the damping higher is velocity. Accordingly, this damping, i.e. retardation, effect is represented in equation of SHM by a  

– 𝑏𝑣 which is proportional to velocity, here 𝑏 is damping constant and 𝑣 =
𝑑𝑥

𝑑𝑡
 is velocity of the oscillating mass. Thus equation of 

SHM  in its modified form is becomes 
𝑑2𝑥

𝑑𝑡 2 = −𝑘𝑥 − 𝑏𝑣 and its solution requires handling second order linear differential equation, 

which is deferred for the present, yet readers inquisitive to know about its mathematical solution 𝑥 = 𝐴0𝑒−
𝑏𝑡

2𝑚 sin 𝜔𝑡 + 𝛿 where 

𝜔′ =   
𝑘

𝑚
 −  

𝑏

2
 

2

⇒ 𝜔′ =   𝜔0 2 −  
𝑏

2
 

2

. Here, 𝑚 is the oscillating mass and  𝜔0 =  
𝑘

𝑚
 is same and as that in ideal SHM. 

Damped oscillation is represented graphically. Readers inquisitive to know more about this derivation are requested to Contact Us.  

Typical observations of damped oscillations are as under – 

(a) Time period of each oscillation remain unchanged and determined by 𝜔0 =

 
𝑘

𝑚
 which leads to 𝜔0 =

2𝜋

𝑇
⇒ 𝑇 =

2𝜋

𝜔0
⇒ 𝑇 = 2𝜋0 

𝑚

𝑘
, since 𝑘 and 𝑚 are 

characteristic parameters of the system. 

(b) It is different than superimposition of two waves. The resultant wave is 

product of SHM 𝑥 = 𝐴0 sin 𝜔𝑡 + 𝛿 and damping factor 𝑒−
𝑏𝑡

2𝑚  and is 

represented as 𝑥 = 𝐴0𝑒−
𝑏𝑡

2𝑚 sin 𝜔𝑡 + 𝛿 ⇒ 𝑥 =  𝐴0 sin 𝜔𝑡 + 𝛿  × 𝑒−
𝑏𝑡

2𝑚 . 

(c) Displacement in each oscillation,  both within an oscillation and across 

successive oscillations decreases with factor with passage of time by a factor 

𝑒−
𝑏𝑡

2𝑚 . 

(d) Rate of reduction in displacement is dependent on velocity 𝑣 =
𝑑𝑥

𝑑𝑡
 of the damping mass 𝑒−

𝑏𝑡

2𝑚  and thus it corroborates 

inclusion of – 𝑏𝑣 in equation of damping harmonic oscillations. 

Damping oscillations is a reality, and study of SHM is incomplete without understanding of damping effect. 

  

http://gyanvigyansarita.in/ContactUs.aspx
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Waves: Understanding of the  SHM is the study of oscillation of a single particle, and is elemental in elaboration of wave, which 

involves medium to either for its existence  or its propagation. Electromagnetic waves are 

exception as they can travel in vacuum, and shall be dealt with separately. Classification of 

waves, based on direction of motion of particles, is in two categories: a) Longitudinal Wave - 

where displacement of particles of medium is about their mean position are in the direction of 

the wave. And  b) Transverse Wave - where displacement of particles of the medium is 

perpendicular to the direction of the wave. Further, consideration in classification of the waves 

is propagation of wave, which can occur both of the categories based on displacement of 

particles of the medium. According to this 

classification: i) Travelling Waves - in which 

motion of every particle is perpetuated to the 

adjoining particle of the medium along the 

direction of propagation, ii) Standing waves – it is a result of interaction of forward 

and backward travelling wave, such that all particles of the medium, at any point of 

time, are in same phase, but their amplitude depends upon their position along the 

wave. While, each of these types of wave is characteristically different in respect of 

motion of particles of the medium of propagation, and shall be studied with its 

mathematical and graphical representation in the form of SHM. Basic concepts of 

waves are common to Sound wave and Light wave. Accordingly, these concepts 

are considered a prerequisite to the understanding of phenomenon of Sound Waves 

and Light Waves, and shall be elaborated before going into Sound and Light waves, 

to develop an integrated perspective of the two. Accordingly, journey in the subject matter has been structured and is in line with the 

approach of this Mentors’ Manual. 

Time period (T): It is the time taken to complete One Cycle.  

Frequency (f or  ) : It is number of cycles in One Second, it is related to 𝑇 =
1

𝑓
. 

Crest : It is the point on wave where displacement of particle from mean position is maximum. 

Trough : It is point on wave where displacement of particle from mean position is minimum i.e. maximum in opposite direction. 

Wavelength () : It is distance covered by wave in one cycle. Most conveniently is recorded as 

distance between two consecutive peaks, as shown in the figure. The latter definition goes equally well 

with standing waves. 

Velocity of wave (v) : It is distance covered by wave in One second, and  𝑣 = 𝑓 =


𝑇
. 

Phase ( ): It is the angular displacement of a particle in a wave from its initial mean position, and 

mathematically 𝜃 = 𝜔𝑡. This repeats after every 2𝜋 angular displacement and corresponds 

to time duration T. In case a particle in a wave, initially displaced from its mean-position by 

an angle ,  is set into SHM then its phase after a lapse of time t is 𝜃 = ∅ + 𝜔𝑡 and is shown 

in the figure. 

Longitudinal Wave: In a wave if particles of medium oscillate, about their mean position, 

along the direction of wave then it is called longitudinal wave. These oscillating particles 

create compression ad rarefaction as shown in the figure. These waves are also represented 

graphically as Sinusoidal Wave as shown in the figure. These waves are realized in rattling sound 

of doors and windows during a thunderstorm. Sound waves are basically Longitudinal Waves. 

Transverse Wave: In this type of wave particles of medium oscillate about their mean position, in 

a direction perpendicular to the direction of wave. Waves generated in a water pond by dropping a 

stone are transverse waves. Likewise, all string-based musical instruments produce transverse 
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waves; so are the Light waves also. 

Travelling Waves:  During elaboration of SHM  consider oscillation of particles about its mean position and mathematically 

represented with a sinusoidal function. Though it is enough to explain the oscillation, but it is insufficient to represent oscillations that 

travel from one point to other, called waves, which carries or transfer energy from source to receiver or destination. This is elaborated 

with a simple straight line function 𝑥 = 𝑣𝑡. Here, x is the displacement of particle, from its initial position, at any instance t, and rate 

of change of 

displacement 𝑣 =
𝑑𝑥

𝑑𝑡
 

which corresponds to the 

slope of the line shown 

in the X-t  graph . This 

line of displacement represents distance travelled by wave at any point of 

time t. In relativistic terms it is identical to the source moved through a 

distance x m t v t     . In this new situation displacement of the 

particle from its mean position is identical to that having started from 

initial displacement −∆𝑡. Accordingly, as per knowledge of Coordinate 

geometry displacement of particle at any instance is analogous to that at 

an instance  𝑡 − ∆𝑡 . 

This logic shall be extended to elaborate travelling SHM called 

travelling or progressive waves expressed as 𝑦 = 𝑓 𝑥, 𝑡  and is 

elaborated in the figure. First graph shows displacement (𝑦) during 

oscillation from its mean position 𝑦 = 𝐴 sin 𝜃, here 𝜃 = 𝜔𝑡 = 2𝜋𝑓𝑡 =
2𝜋

𝑇
𝑡 at any instant of time. Next is the wave taken to be moving along X- 

axis through a distance x corresponding to a phase angle   in time t. 

Accordingly, displacement of a particle from its mean position,  at a 

distance from the reference point, sat source,  from its mean position, in 

accordance with the above example can be represented with a graph 

below where 𝑦 = 𝐴 sin 𝜔 𝑡 − ∆𝑡  = 𝐴 sin  𝜔  𝑡 −
𝑥

𝑣
  . Taking, 

variables x and t such that  𝑡 −
𝑥

𝑣
  remain constant, the displacement y shall also remain constant. This implies that with passage of 

time displacement is travelling forward, while particles of medium keep oscillating about their mean position. This is shown in the 

second graph. The third inference is about progressive displacement of a particle of medium from its mean position while both x and t 

are changing. It will be seen that when  𝑡 −
𝑥

𝑣
  remains constant, displacement remains constant, that is with passage of time t, 

displacement moves forward along x with velocity v. This nature of travelling wave is shown in the third graph. 

Fourth characteristic of travelling wave comes from its periodicity. At any point on the passage of the displacement of a particle of 

medium from mean position repeats at an interval 𝑇 =
2𝜋

𝜔
=

1

𝑓
 , here 𝑇  - is called Time Period and it corresponds to angular 

displacement 2𝜋 to complete one oscillation, characteristic to sine function. Likewise, at any instance of time along the passage of 

time the displacement of particle from its mean position repeats at an interval of  =
𝑣

𝑓
= 𝑣𝑇, here  - is called Wavelength, i.e. 

distance covered in one Oscillation. 

In a wave travelling forward i.e. along x-axis –ve sign appears with 
𝑥

𝑣
 and accordingly a general expression of a travelling/progressive 

wave is 𝑦(𝑥, 𝑡) = 𝐴 sin  𝜔  𝑡 −
𝑥

𝑣
𝑥  = 𝐴 sin  𝜔  𝑡 −

𝑥

𝑣
  . If the wave is travelling in a direction along (–x) axis, automatically the 

equation shall take the form 𝑦 𝑥, 𝑡 = 𝐴 sin  𝜔  𝑡 −
 −𝑥 

𝑣
𝑥  = 𝐴 sin  𝜔  𝑡 +

𝑥

𝑣
  . Thus, progression of wave perpetuates with time. 

This is general expression of a progressive wave which represents displacement of a particle in the medium as a function of time 

and position from the source. 

This expression is being extended to a differential equation of with time and position varying phenomenon known as Wave Equation. 

Accordingly, rate of change of displacement w.r.t. time of particle of the medium from its mean position i.e. velocity of particles of 
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the medium performing SHM is expressed as 𝑣𝑦−𝑡 =
𝜕

𝜕𝑡
𝑦 𝑥, 𝑡 = 𝜔𝐴 cos  𝜔(𝑡 −

𝑥

𝑣
)  it is at any position x . Likewise, rate of change 

of displacement w.r.t. position of the particle of the medium on the line of propagation of the wave, at any instance of point of time t  

is as 𝑝𝑦−𝑥 =
𝜕

𝜕𝑥
𝑦 𝑥, 𝑡 =

𝜔

𝑣
𝐴 cos  𝜔(𝑡 −

𝑥

𝑣
) . It is to be noted with a caution that this velocity of the particle  y tv 

and  the velocity 

of travelling wave (v) are different. Taking it forward, second order of both the derivatives, acceleration of the particle w.r.t time and 

position works out to 𝑎𝑦−𝑡 =
𝜕2

𝜕𝑡 2 𝑦 𝑥, 𝑡 = −𝜔2𝐴 sin  𝜔(𝑡 −
𝑥

𝑣
) and 𝑞𝑦−𝑥 =

𝜕2

𝜕𝑥 2 𝑦 𝑥, 𝑡 = −
𝜔2

𝑣2 𝐴 sin  𝜔(𝑡 −
𝑥

𝑣
) , respectively. This 

leads to ratio of the two accelerations 
𝑎𝑦−𝑡

𝑞𝑦−𝑥
=

𝜕2

𝜕𝑡 2𝑦 𝑥,𝑡 

𝜕2

𝜕𝑥 2𝑦 𝑥,𝑡 
=

=−𝜔2𝐴 sin  𝜔(𝑡−
𝑥

𝑣
) 

−
𝜔 2

𝑣2 𝐴 sin  𝜔(𝑡−
𝑥

𝑣
) 

= 𝑣2. It is most convenient to express a dynamic process in 

the form of a differential equation. Accordingly, 
𝝏𝟐

𝝏𝒕𝟐
𝒚 𝒙, 𝒕 = 𝒗𝟐  

𝝏𝟐

𝝏𝒙𝟐 𝒚 𝒙, 𝒕  ,  and in its complementary form as 
𝝏𝟐

𝝏𝒙𝟐 𝒚 𝒙, 𝒕 =

𝟏

𝒗𝟐  
𝝏𝟐

𝝏𝒕𝟐
𝒚 𝒙, 𝒕  , called Wave Equation. Discovery of One Dimensional Wave Equation by Jean le Rond D’ Alembert, in 1746, 

followed by Leonhard Euler Three Dimensional Wave Equation within a decade, was a great leap in discovery of physical systems 

and processes. Discovery of wave equation later helped to generalize transfer of energy through wave right from mechanical 

vibrations to sound and electromagnetic radiation. Here, analysis is confined to One Dimensional waves. 

Velocity of Wave: In this wave equation velocity of wave is a parameter which rationalizes acceleration of particles of medium w.r.t. 

time and position from the source. In strings based musical instruments transverse waves are established. While in gases, waves are 

where longitudinal. In both the cases, velocity of waves is governed by different phenomenon and are being elaborated separately. 

Velocity of Wave in String: Strings are so made that their mass per unit length (µ) is 

uniform and is valid in normal state of rest. When string is set to transverse wave, along its 

length, non-uniform extension will take place and this influences uniformity of µ. Looking 

at graphical representations of waves it might be perceived that theoretically rigidity of a 

metal string is significant, but in reality it is quite small and for all practical purposes it is 

considered to be uniform. Now it needs to be explored as to how Tension (T) and µ  play 

role in velocity of wave. Consider an infinitesimal element of string x   having tensions 

T1 and T2 at its Two ends, which goes in to decide shape of the waveform. Since, the wave 

propagation is transverse and hence lateral displacement, velocity and accelerations of the particles of the element of string along 

length shall not exist, Accordingly, T1x=T2x and it complies with Newton’s Third Law of Motion. But, the nature of wave demanding 

transverse motion of particles of string will utilize difference in transverse components of tension to cause an acceleration such that 

∆𝑇 = 𝑇2𝑦 − 𝑇1𝑦 =  𝜇 ∙ ∆𝑥 
𝜕2𝑦

𝜕𝑡 2 … (1), in accordance with the Newton’s Second Law of Motion. Looking at the tensions over element 

∆𝑥 of the string, 𝑇2𝑦 − 𝑇1𝑦 = 𝑇2 sin 𝜃2 − 𝑇1 sin 𝜃1. For the infinitesimal length approximation 
1 2T T T   and 1

1 1

1

sin tan
y

x

T

T
    likewise 

2

2 2

2

sin tan
y

x

T

T
   , being 

1   and so also 
2  . Thus,,     ∆𝑇 = 𝑇2𝑦 − 𝑇1𝑦 = 𝑇  

𝑇2𝑦

𝑇2𝑥
−

𝑇1𝑦

𝑇1𝑥
 → ∆𝑇 = 𝑇  

  𝜕𝑦

𝜕𝑥
 
𝑥→𝑥+∆𝑥

− 𝜕𝑦

𝜕𝑥
 
𝑥→𝑥

 

∆𝑥
 ∆𝑥 = 𝑇 ∙ ∆𝑥

𝜕2𝑦

𝜕𝑥 2
… (2) 

Combining equation (1 & 2) we get 

2

2 2 2

22 2

2

...(3)

y

y y Ttx T x
yt x

x






      
 



, While, as per Wave Equation, 

𝜕2

𝜕𝑡 2𝑦 𝑥,𝑡 

𝜕2

𝜕𝑥 2𝑦 𝑥,𝑡 
= 𝑣2 … (𝟒), 

Now, combining equation (3 & 4) we get 
2 T T

v v
 

    is the equation of velocity of wave in a string. This is also expressed 

as 𝑣 =  
𝑌

𝜌
 based on dimensional equality  of 

𝑇

𝜇
=  

𝑌

𝜌
. 

Understanding of waves in strings, as seen in musical instruments, is with its ends fixed called Node, which  has no motion, 

irrespective of the type of wave  be it transverse or longitudinal. Therefore, definition of wave where 𝑣 = 𝑓. The number of Nodes 

between the fixed ends having  length of wire (L) would decide pitch length and in turn frequency of wave. In case there are no nodes 
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between the fixed ends, the length of wires it constitutes half pitch length 𝐿 =


2
.  Accordingly,𝑣 = 2𝐿 ∙ 𝑓 =  

𝑇

𝜇
,. It leads to natural 

frequency of vibration of string as  𝑓 =
1

2𝐿
 

𝑇

𝜇
.  

Velocity of Wave in Fluids: Progression of wave in fluid is conceptualized in 

One Dimension in the figure, where travel of piston at velocity 𝒗𝒚 in time t 

establishes longitudinal pressure wave in fluid which travels a distance 𝑣𝑡, in 

corresponding time, such that velocity of wave is 𝑣. Beyond the distance of 

travel of wave, medium remains at equilibrium state. Considering, bulk 

elasticity of the medium (B),  it leads to 𝐵 =
∆𝑝
𝑣𝑦 𝑡

𝑣𝑡

=
𝑣∆𝑝

𝑣𝑦
. Accordingly, it leads 

to ∆𝑝 = 𝐵
𝑣𝑦

𝑣
=> ∆𝐹 = 𝐴∆𝑝 = 𝐵

𝐴𝑣𝑦

𝑣
… (1), and per Newton’s Second Law of 

Motion impulse ∆𝐹 = 𝑚∆𝑣𝑦 = 𝜌 𝐴𝑣 𝑣𝑦 … (2), Combining equation (1) and 

(2) we get  𝐵
𝐴𝑣𝑦

𝑣
= 𝜌 𝐴𝑣 𝑣𝑦 , or 𝒗 =  

𝑩

𝝆
.  

Velocity of Wave in Gas: Gases are highly compressible as compared to liquids. Therefore, Newton assumed that temperature of gas 

remains constant and accordingly used Boyle’s Law pv = Const. to investigate velocity of wave in gases. Differentiating Boyle’s 

Equation as :𝑝𝜕𝑣 + 𝑉𝜕𝑝 = 0, or 𝐵 = −
𝜕𝑝

 𝜕𝑉
𝑉  

= 𝑝. Using this value of B, Newton redefined velocity of wave in gases as =  
𝑝

𝜌
; this 

is known as Newton’s Equation of Velocity of Wave in Gases. This equation is comparable to velocity of wave in strings. 

In case of gases which are highly compressible, and the velocity of wave is quite high, the progression of pressure wave is an 

Adiabatic process where medium has no time to exchange heat with the environment, either during compression or rarefaction. 

Accordingly, in this case instead of Boyle’s Law equation, and comply with 𝒑𝑽𝜸 = 𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭 as per Poisson’s Law, covered in Heat 

and Thermodynamics.  Thus Laplace, suggested a correction based on  Poisson’s Law whose logarithm is log 𝑝 + 𝛾 log 𝑉 = 𝐶𝑜𝑛𝑠𝑡. 

Differentiating this log-equation w.r.t. t leads to 
1

𝑝

𝑑𝑝

𝑑𝑡
+

𝛾

𝑉

𝑑𝑉

𝑑𝑡
= 0, or 𝐵 =

𝑑𝑝
𝑑𝑉

𝑉 
= 𝛾𝑝.  Accordingly, the corrected equation 𝑣 =  

𝛾𝑃

𝜌
 is 

known as Newton-Laplace Equation of velocity of wave in gases. 

Energy and Power in Wave: In wave represented by 𝑦(𝑥, 𝑡) = 𝐴 sin  𝜔𝑡 −
𝜔

𝑣
𝑥 . In a string tension is always along the its length 

and string is considered to be flexible enough to shape its every  infinitesimal length x  corresponding to tensions xT and yT . 

Accordingly, 
𝜕𝑦

𝜕𝑥
=

𝑇𝑦

𝑇𝑥
= −

𝐴𝜔

𝑣
cos  𝜔𝑡 −

𝜔

𝑣
𝑥 . Accordingly, 𝑇𝑦 = −

𝑇𝐴𝜔

𝑉
cos  𝜔𝑡 −

𝜔

𝑣
𝑥 , here 𝑇𝑥 = 𝑇 which is uniform along the 

length of string. Thus, instantaneous power 𝑃(𝑥, 𝑡) =
𝑑𝑊

𝑑𝑡
= 𝑇𝑦

𝜕𝑦

𝜕𝑡
= 𝑇  𝐴  

𝜔

𝑣
 cos  𝜔𝑡 −

𝜔

𝑣
𝑥  ∙  𝐴𝜔 cos  𝜔𝑡 −

𝜔

𝑣
𝑥  .  It leads to 

𝑃 𝑥, 𝑡 =
𝑇𝐴2𝜔2

𝑣
cos2  𝜔𝑡 −

𝜔

𝑣
𝑥 =

𝑇𝐴2𝜔2

𝑣
 

1−cos 2 𝜔𝑡−
𝜔

𝑣
𝑥 

2
 . It comprises of Two components, One is 

1

2
∙

𝑇𝐴2𝜔2

𝑣
 a constant and it 

contains parameters characteristic to wave and independent of variables 𝒙  and 𝒕.  And, the other is 
1

2
∙

𝑇𝐴2𝜔2

𝑣
 cos 2  𝜔𝑡 −

𝜔

𝑣
𝑥   

having a cosidal trigonometric function as a coefficient of constant component; it is time and place variant which averages to Zero 

over a cycle. Thus, average power of wave 𝑷𝒂𝒗 is represented as 𝑃𝑎𝑣 =
1

2
∙

𝑇𝐴2𝜔2

𝑣
=

𝟏

𝟐
∙

𝑻𝒗𝑨𝟐𝝎𝟐

𝒗𝟐 =  𝟏
𝟐
∙ 𝝁𝒗𝑨𝟐𝝎𝟐 

𝑣= 
𝑇

𝜇

 . This expression of 

average power is be represented in terms of frequency () as  𝑷 = 𝟐𝝅𝟐𝝁𝒗𝑨𝟐𝟐.  

Principle of Superimposition of Waves: A simple case of an object moving vertically with a constant velocity in an inertial frame of 

reference is shown in the figure as (𝑦, 𝑡) graph where 𝑦1 = 𝑚𝑡. In the graph below, another object moves vertically with the same 

constant velocity, but after a lapse of time . Considering motion of second object as a wave, a continuous function 𝑦2 = 𝑚 𝑡 − ∆𝑡  

in (𝑦, 𝑡)graph and it is plotted for 𝑡 > 0. Summation of the two functions 𝑦 = 𝑦1 + 𝑦2 = 𝑚𝑡 + 𝑚 𝑡 − 𝜏 = 2𝑚  𝑡 −
𝜏

2
 ,in another 

 𝑦, 𝑡  graph is superimposition of two functions and is best represented mathematically. 
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On similar lines two wave functions 𝑦1 = 𝐴1 sin  
2𝜋

1
 𝑣1𝑡 − 𝑥   

and 𝑦2 = 𝐴2 sin  
2𝜋

2
 𝑣2𝑡 − 𝑥   are considered for superimposition 

of waves. It could lead to multiple cases where in the Two wave 

functions with different – a) Amplitudes (A), b) Wave lengths (),  

c) velocity (𝑣), and d)wave travel during initial phase shift. In 

most of the problems of wave superimposition that are 

encountered at this stage are for two waves with identical, 

Amplitude, velocity and frequency or wave length and accordingly 

simplistic mathematical analysis of  waves travelling in opposite 

directions such as: 𝑦 = 𝐴 sin
2𝜋


 𝑣𝑡 + 𝑥 + 𝐴 sin

2𝜋


 𝑣𝑡 − 𝑥 =>

 Asin
2𝜋


 𝑣𝑡 + 𝑥 + sin

2𝜋


 𝑣𝑡 − 𝑥  . Using the trigonometric identities it reduces into 𝑦 =  2𝐴 cos  

2𝜋𝑥


 sin  

2𝜋𝑣𝑡


 =  𝐴𝑥 sin  

2𝜋𝑣𝑡


 . 

Here, Amplitude of wave function at every point along the pitch is 𝐴𝑥 = 2𝐴 cos  
2𝜋𝑥


 . And, displacement of each particle  𝑦  from 

its mean position at any instant (t) is in same phase 𝑦 ∝ sin  
2𝜋𝑣𝑡


 , where proportionality constant is 𝐴𝑥 . This is a special case of 

Standing wave or Stationary wave and finds extensive application in Sound Waves. Further, analysis of superimposition shall be 

dealt with as resonance of sound waves in strings and air column. This is also applicable in analyzing reflection, refraction, 

interference and diffraction of waves; this is common to both sound and light waves; it is elaborated in Part II of this section of 

Mentors’ Manual.. 

A generic analysis of periodic wave function was suggested by Joseph Fourier, in 1807, in the form of a series of sinusoidal 

functions :𝐴𝑥 =
𝐴0

2
+  𝐴𝑛 ∙ sin  

2𝜋𝑛𝑥

𝑇
+ 𝜑𝑛 𝑁

𝑛=1 . Here, parameters of the waveform are, 𝐴0 – is the bias from mean position of the 

periodic waveform, 𝐴1- is the amplitude of the sinusoidal waveform of frequency as that of the periodic waveform; this is called 

fundamental frequency (f),𝐴𝑛  – is the amplitude of sinusoidal wave form of frequencies multiple of fundamental frequency  𝑛𝑓  and 

are called harmonics, n- is called the order of harmonic,  and 𝜑𝑛  – is the phase shift from the initial in respect of each harmonic. 

Determination of these parameters of the frequencies constituting a non-sinusoidal periodic function was suggested by Fourier and  is 

known as Fourier Analysis; this is inverse of superposition of sinusoidal waveforms. Elaboration of Fourier Analysis is outside the 

scope of this document, nevertheless, readers are welcome to raise their inquisitiveness through Contact Us. 

Doppler Effect in an Inertial Frame : Shrill of a train while arriving at platform and while leaving is different.  Likewise, shrill of a 

horn of a Train being chased by a vehicle is different than that experienced on a platform. This is being analysed in three different 

cases; a) Source moving towards a stationary Observer, b) Observer moving away from a stationary source, c) Both Source and 

Observer moving in one direction, with Observer ahead of Source. The results of the analysis in three cases have been generalized, at 

the end. 

Case 1: Source moving towards a stationary Observer 

Standard notations that are being used in the analysis, elaborated in 

figure, are as under- 

V- Velocity of Sound  ;Vs– Velocity of Source ≠ 0;   Vo – Velocity 

of Observer =0, 

T – Time period of Sound ; t - an instance of the analysis, 

t1– an instance when First wave-front emitted by source at t=0 

reaches observer at a distance =
𝐷

𝑉
. 

X – distance moved by Source during = 𝑇 ∙ 𝑉𝑠,  when Source emits 

Second wave-front 

t2’- is the time taken Second wave-front to reach the Observer 

=
𝐷−𝑋

𝑉
 

"

2t  is the instance when second wave-front emitted by source at 

t T reaches observer at a distance X and is 
" '

2 2t T t   

f- Frequency of Sound; f’ – Apparent Frequency of Sound 

 

Therefore, effective Time Period for the Observer- 

http://gyanvigyansarita.in/ContactUs.aspx
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𝑇 ′ = 𝑡2
" − 𝑡1 =  𝑇 + 𝑡2

′  − 𝑡1 =  𝑇 +
𝐷 − 𝑋

𝑉
 −

𝐷

𝑉
=  𝑇 +

𝐷 − 𝑇𝑉𝑠

𝑉
 −

𝐷

𝑉
= 𝑇  1 −

𝑉𝑠

𝑉
  

Hence, apparent frequency :
'

'

1 1

1

V
f f

VsT V Vs
T

V

   
 

 
 

 

Inference: f ’ is equal to (f)x(Ratio of Velocity of  sound w.r.t. Observer to Velocity of Sound w.r.t Source 

Case 2: An Observer moving away from a stationary source: 

Vs=0 and Vo≠ 0, and is elaborated in figure. 

From the above- 

𝑡1  1 −
𝑉𝑜

𝑉
 =

𝐷

𝑉
 ; 𝑡1 =

𝐷

𝑉−𝑉𝑜
 ;  and 𝑡2  1 −

𝑉𝑜

𝑉
 = 𝑇 +

𝐷

𝑉
  ; 𝑇2 =

𝑇𝑉+𝐷

𝑉−𝑉𝑜
 

In this case Apparent Time Period for the Observer is – 

𝑡 ′ = 𝑡2 − 𝑡1 =
𝑇𝑉

𝑉−𝑉𝑜
 ; or𝑓 ′ =

1

𝑡′
=

1

𝑇
 

𝑉−𝑉𝑜

𝑉
 = 𝑓  

𝑉−𝑉𝑜

𝑉
  

Inference: f ’ is equal to (f)x(Ratio of Velocity of  sound w.r.t. 

Observer to Velocity of Sound w.r.t Source (Same as in case 1) 

Case 3: Both Source and Observer moving in one direction, with Observer ahead of Source 

Figure below specifies each instance and specially t1 and t2 

when First and Second Wave-front emitted by Source reach 

Observer, respectively alongwith relationships of related 

variables, as shown in the figure. Accordingly, apparent Time 

Period would be - 

𝑇 ′ = 𝑡2 − 𝑡1 =
𝑇 𝑉 − 𝑉𝑠 + 𝐷

 𝑉 − 𝑉𝑜 
−

𝐷

 𝑉 − 𝑉𝑜 
= 𝑇

 𝑉 − 𝑉𝑠 

 𝑉 − 𝑉𝑜 
 

Or, 𝑓 ′ =
1

𝑇′
=

1

𝑇
∙  

𝑉−𝑉𝑜

𝑉−𝑉𝑠
 = 𝑓.  

𝑉−𝑉𝑜

𝑉−𝑉𝑠
  

Inference : f ’ is equal to (f) multiplied by (Ratio of Velocity 

of  sound w.r.t. Observer to Velocity of Sound w.r.t. Source 

(Same as in case 1). It is to be noted that for all velocities 

reference direction is from source towards the observer; 

accordingly all velocities on reference direction  are (+)ve and 

all velocities against the reference are (-)ve.  

Effect of Wind Velocity in Doppler’s Effect: Since propagation of sound requires a medium. Hence if wind is blowing in reference 

direction i.e. from source towards the observer then 𝑉 → 𝑉′ = 𝑉 + 𝑉𝑤  and if it in reverse direction then 𝑉 → 𝑉′ = 𝑉 − 𝑉𝑤 . The reason 

behind this is that wind, the medium, being carrier of the sound wave and thus effective velocity of sound is 𝑉′ = 𝑉 ± 𝑉𝑤 , depending 

upon the direction of the wind, Accordingly, frequency of sound perceived by the observer is 𝑓 ′ = 𝑓.  
𝑉 ′−𝑉𝑜

𝑉 ′−𝑉𝑠
 . 

General Inference on Doppler’s Effect : In case of source and/or observer moving, apparent frequency to the observer is natural 

frequency of source multiplied by ratio of relative velocity of sound w.r.t. Observer  to the relative velocity of sound w.r.t. the Source. 

Manifestation of Doppler Effect in Light is change of Colour, called Doppler Shift and shall be elaborated in Part-II of this Chapter in 

Mentors’ Manual. 
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Summary: Initially the concepts of waves discussed above are applicable in analysis of Sound Waves and Light Waves, with distinct 

boundary of frequencies. Accordingly, these concepts shall be used to elaborate commonalities in respect of various phenomena like 

reflection, refraction, interference, diffraction and polarization common to light and shall be included in later Parts of this Chapter. 

Light waves are a narrow part of electromagnetic waves, which is outside scope of this manual. Nevertheless, readers are welcome to 

raise their inquisitiveness through Contact Us. 

Examples have been drawn from real life experiences which help to build visualization and an insight into the phenomenon occurring 

around. A deeper journey into the problem solving would make integration and application of concepts intuitive. This is absolutely 

true for any real life situations, which requires multi-disciplinary knowledge, in skill for evolving solution. Thus, problem solving 

process is more a conditioning of the thought process, rather than just learning the subject. Practice with wide range of problems is 

the only pre-requisite to develop proficiency and speed of problem solving, and making formulations more intuitive rather than a 

burden on memory, as much as overall personality of a person. References cited below provide an excellent repository of problems. 

Readers are welcome to pose their difficulties to solve any-problem from anywhere, but only after two attempts have been made  to 

solve it. It is our endeavour to stand by upcoming student in their journey to become a scientist, engineer and professional, whatever 

they choose to be. 

Going forward, these typical  problems from contemporary text books and Question papers from various sources are being 

progressively developed and shall be uploaded as supplement to the respective Chapters of Mentors’ Manual. It is a dynamic exercise 

to catalyse the conceptual thought process.  
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