Wave and Motion : Sound – Subjective Questions (Typical) (<u>Illustrations Only</u>)

I-01	Time taken by sound to travel a distance $t = \frac{s}{v}$. Therefore time taken by sound to travel through the tube of
	length $s = 1$ m shall be $t_t = \frac{s}{v_t}$ and through air in the tube shall be $t_a = \frac{s}{v_a}$. Accordingly, using the given
	data $t_t = \frac{1}{5200} = 0.19$ ms and $t_a = \frac{1}{330} = 3.03$ ms. Therefore, interval between two blows shall be $\Delta t =$
	$t_a - t_t$, or $\Delta t = 3.03 - 0.19 = 2.84$ ms. Hence, answer is 2.84 ms.
I-02	Distance covered by reflected sound to reach the person chanting JAI-RAM is $s = 2 \times d \Rightarrow s = 2 \times 80$ m
	or 160 m. Hence time taken for hearing a chant is $t = \frac{5}{v} = \frac{160}{320} = 0.5$ s. Therefore, a maximum interval of
	0.5 s between two chants will create an overlap of two chants to the listener and there would be no distinct reflected sound, called echo, disturbing the listener. Thus maximum time interval between two chants is 0.5 s.
1-03	Distance travelled by clapping sound heard by the man clapping is $s = 2 \times d = 2 \times 50.0 = 100$ m.
	Interval between two claps is $t = \frac{1}{10} = 0.3$ s. Time taken by clapping sound to reach back the man is $t^{-1} = \frac{1}{10}$
	$\frac{1}{v}$. For merging of echo of the clap essential requirement is $t = t' \Rightarrow 0.3 = \frac{1}{v} \Rightarrow 0.3 = \frac{1}{v} \Rightarrow v = \frac{1}{0.3}$ or
	v = 333 m/s, is the answer.
I-04	Wavelength is $\lambda = \frac{v}{f}$. Here, speed of sound is $v = 360$ m/s is constant for all the frequencies. This inverse
	proportionality of wavelength with frequency implies that $\lambda_{min} = \frac{v}{f_{max}} \Rightarrow \lambda_{min} = \frac{360}{20 \times 10^3} = 18 \times 10^{-3} \text{ m}$
	or 18 mm and $\lambda_{max} = \frac{v}{f_{min}} \Rightarrow \lambda_{max} = \frac{360}{20} = 18$ m. Hence, answers are 18 mm, 18 m.
I-05	Wavelength is $\lambda = \frac{v}{c}$. Here, speed of sound water is $v = 1450$ m/s is constant for all the frequencies.
	Maximum audible frequency is $f_{max} = 20000$ Hz and minimum frequency is $f_{min} = 20$ Hz This inverse
	proportionality of wavelength with frequency implies that $\lambda_{min} = \frac{1450}{f_{max}} \Rightarrow \lambda_{min} = \frac{1450}{20 \times 10^3} = 72.5 \times 10^{-3} \text{ m}$
	or 7.25 cm and $\lambda_{max} = \frac{v}{f_{min}} \Rightarrow \lambda_{max} = \frac{1450}{20} = 72.5$ m. Hence, answers are 7.25 cm, 72.5 m.
I-06	Part (a): For sound to spread uniformly in all the directions if wavelength $\gg d$. If is also given that $\lambda =$
	$10 \times d$, here $d = 20$ cm or 0.2 m is the diameter of the speaker. Hence, $\lambda = 10 \times 0.2 = 2$ m. It
	is also given that speed of sound is $v = 340$ m/s. Hence, frequency of sound is $f = \frac{1}{\lambda} = \frac{1}{2} = \frac{1}{2}$
	170 Hz, this is answer of part (a). Point (b): Sound is trouble in one direction if $f \ll d$ and given that $\lambda = \frac{d}{d} = \frac{0.2}{0.2} = 0.02$ m. Hence
	Fart (b): Sound is travers in one direction in $f \ll u$, and given that $\lambda = \frac{1}{10} = \frac{1}{10} = 0.02$ in. Hence,
	corresponding frequency is $f = \frac{1}{\lambda} = \frac{1}{0.02} = 17 \times 10^{\circ}$ Hz or 17 kH
	Tience, answers are (a) 170 Hz (b) 17 kHz.
I-07	Velocity of waves changes with medium but its frequency remain unchanged and $\lambda = \frac{v}{f}$. In the instant case
	frequency of ultrasonic wave is 4.5 MHz. Hence, wavelength in in air it is $\lambda_a = \frac{v_a}{f} = \frac{340}{4.5 \times 10^6} = 7.6 \times 10^{-6}$
	10^{-5} m and in tissue it is $\lambda_t = \frac{v_t}{f} = \frac{1.5 \times 10^3}{4.5 \times 10^6} = 3.3 \times 10^{-4}$ m.

	Hence, answers are 7. 6×10^{-5} m, 3. 3×10^{-4} m.
I-08	Generic equation of a travelling wave is $y = A \sin\left(\omega t - \frac{x}{\lambda}\right)$ and comparing it with the given equation of
	wave $A = 6.0 \times 10^{-5}$ m, angular velocity is $\omega = 600$ rad/s, and wavelength is $\lambda = \frac{2\pi}{1.0}$ m. Accordingly,
	Part (a): Required ratio is $\frac{A}{2\pi} = \frac{6.0 \times 10^{-5}}{2\pi} = \frac{10.8 \times 10^{-5}}{1.7 \times 10^{-5}} \rightarrow 1.7 \times 10^{-5}$, answer of part (a).
	$\lambda = \frac{2\pi}{1.8} = 2\pi$
	Part (b): Velocity amplitude is $v_a = A \times \omega$ and speed of wave is $v = f \times \lambda = \frac{1}{2\pi} \times \lambda$, Thus the required
	ratio $\frac{\omega}{v} = \frac{\omega}{2\pi} \times \lambda = \frac{1}{\lambda}$. Using the available data $\frac{\omega}{v} = \frac{\omega}{2\pi} \times \frac{2\pi}{1.8} = 1.8A = 1.8 \times (6.0 \times 10^{-5}) =$
	1.1×10^{-4} , answer of part (b).
	Thus answers are (a) 1. 7×10^{-5} , (b) 1. 1×10^{-5}
I-09	Time period of the wave is $T = \frac{1}{t} = \frac{1}{100} = 0.01$ s or 10 ms. And wavelength $\lambda = \frac{v}{t} = \frac{350}{100} = 3.5$ m = 350
	cm.
	Part (a): Relationship of angular shift with time period is $T \rightarrow 2\pi$. Accordingly, at any time $t = 2.5$ ms,
	phase shift $\theta = \mod\left(\frac{\tau}{T}\right) \times 2\pi \Rightarrow \theta = \mod\left(\frac{2.5}{1}\right) \times 2\pi$. It leads to $\theta = 0.5\pi = \frac{\pi}{2}$. Hence,
	answer of part (a) is $\frac{\pi}{2}$ rad
	Part (b): Further, relationship between wavelength and angular shift is $\lambda \to 2\pi$. Accordingly for any
	distance $x = 10.0$ cm phase shift $\theta = \text{mod}\left(\frac{x}{\lambda}\right) \times 2\pi \Rightarrow \theta = \text{mod}\left(\frac{x}{350}\right) \times 2\pi = \frac{2\pi}{35}$, Hence
	answer of part (b) is $\frac{2\pi}{35}$ rad.
	Thus answers are (a) $\frac{\pi}{2}$ (b) $\frac{2\pi}{35}$.
I-10	The arrangement of sources A and B and points of observation as per part (a) is P and as per part (b) is Q. Here, distance between the sources A and B is $x = 10$. Distance of point P from source B is $d_1 = 20$ cm. Since, P is on the line joining AB and on opposite of source A and hence distance of P from source A is $d_2 = x + d_1 = 10 + 20 = 30$ cm. It is given that point Q is situated on perpendicular bisector of line joining AB and hence by geometry distance from sources is A and B is equal and $d_3 = 20$ cm.
	Further it is given that wavelength of the waves from the two sources is $\lambda = \frac{1}{1 - 1}$
	5 cm. And relationship between wavelength and phase difference is $\lambda \rightarrow A$ $\bigcirc B$ 2π . Thus, for any distance x phase shift $\theta = \mod \left(\frac{x}{2}\right) \times 2\pi$
	2π . Thus, for any distance χ phase sint $v = \mod \binom{1}{\chi} \times 2\pi$.
	Part (a): Phase shift θ_1 in wave from source B is $\theta_1 = \mod(\frac{1}{\lambda}) \times (d_2)$
	$2\pi = \text{mod}\left(\frac{-5}{2}\right) \times 2\pi = 0$. Likewise, phase shift θ_2 in wave from source A is $\theta_2 = \text{mod}\left(\frac{-2}{\lambda}\right) \times (2\pi)^2$
	$2\pi = \text{mod}\left(\frac{3\theta}{5}\right) \times 2\pi = 0$. Therefore phase shift in waves arriving at point P is $\Delta\theta_p = \theta_1 - \theta_2 = 0$
	0-0=0. Hence, answer of part (a) is Zero.
	Part (b): Phase shift in waves arriving at point Q both sources is equal $\theta_3 = \text{mod}\left(\frac{-3}{\lambda}\right) \times 2\pi$. It solves to
	$\theta_3 = \text{mod}\left(\frac{20}{5}\right) \times 2\pi = 0$. Hence, their difference is also bound to be zero, this answer of part
	(D). Thus, answers are (a) Zero (b) Zero.
I-11	Progression of sound wave is gases is an adiabatic process since rate of undergoing compression and
	rarefaction of particles of medium participating in wave is so high that it does not have time to exchange
	heat with the environment. Accordingly, using adiabatic properties of gases speed of sound is = $\sqrt{\frac{\gamma P}{\rho}}$.

		Here, using given data $\gamma = \frac{C_p}{C_v} = \frac{3.5R}{2.5R} = \frac{7}{5}$, pressure of the gas $P = 1.0 \times 10^5$ N/m ² , and density $\rho = \frac{m}{v}$ in IS
		calculates to $\rho = \frac{32 \times 10^{-3}}{22.4 \times 10^{-3}} = \frac{32}{22.4}$. Hence, $v = \sqrt{\frac{\binom{7}{5} \times (1.0 \times 10^5)}{\frac{32}{22.4}}} = \sqrt{\left[\left(\frac{7 \times 22.4}{5 \times 32}\right) \times 10\right]} \times 10^2 = 3.13 \times 10^2 \times 10^2 = 3.13 \times 10^2 \times 10^2 \times 10^2 \times 10^2 \times 1$
		313 m/s, is the answer.
I	-12	Speed of sound in air is $v = \sqrt{\frac{\gamma P}{\rho}}$ (1) where, $\gamma = \frac{c_p}{c_v}$, pressure of the gas P and density gas is $\rho = \frac{m}{V}$.
		Further as per Ideal Gas Equation $pV = nRT \Rightarrow T = \left(\frac{P}{R}\right) \times \frac{V}{n} \Rightarrow T \propto \frac{1}{\rho}(2)$. Since P and R are constants.
		Therefore, combining equations (1) and (2) we have $v = \sqrt{\frac{\gamma P}{\frac{1}{T}}} \Rightarrow v = \sqrt{\gamma PT} \Rightarrow v \propto \sqrt{T}(3)$ Here, T is
		temperature in thermodynamic scale i.e. Kelvin. In initial case $T_1 = 10^{\circ}C \Rightarrow T_1 = 273 + 17 = 290$ K and speed of sound $v_1 = 340$ m/s. In case 2 temperature changes to $T_2 = 32^{\circ}C \Rightarrow T_2 = 273 + 32 = 305$ K. Since we are required to determine speed of sound at where only temperature changes, keeping other
		parameters same, using (3) we have $\frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} \Rightarrow v_2 = \sqrt{\frac{T_2}{T_1}} \times v_1$. Using the available data $v_2 = \sqrt{\frac{305}{290}} \times 340$
		or $v_2 = 348.9$ m/s and using principle of SDs answer is $v_2 = 349$ m/s.
I	-13	Using ideal gas properties and that sound wave is gases travel adiabatically we know that $v \propto \sqrt{T}$. It is given that $T_1 = 273$ K where speed of sound is v_1 and at some other temperature say T_2 K speed of sound
		is $v_2 = 2v_1$. Thus, using the equation above $\frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} \Rightarrow 2 \times v_1 = \sqrt{\frac{T_2}{273}} \times v_1 \Rightarrow T_2 = 2^2 \times 273 = 1092$
		K. The temperature in commonly used scale of centigrade is $T_2 = 1092 - 273 = 819^{\circ}$ C, is the answer.
I	-14	Using ideal gas properties and that sound wave is gases travel adiabatically we know that $v \propto \sqrt{T}$ (1). It is given that in space of width <i>d</i> temperature varies linearly from T_1 to T_2 . Therefore, at any distance <i>x</i> from
		the boundary of temperature T_1 the temperature shall be $T_x = T_1 + \frac{T_2 - T_1}{d} \times x \Rightarrow T_x = \frac{T_1 d + (T_2 - T_1)x}{d}$. Time
		taken by sound to travel through a thin film of medium of thickness Δx , assuming temperature in the thin film to be uniform, $\Delta t_x = \frac{\Delta x}{\Delta x}$.
		Using (1) we have $\frac{v_x}{v_1} = \sqrt{\frac{T_x}{T_1}} \Rightarrow v_x = \sqrt{\frac{T_x}{T_1}} \times v_1(2)$. Therefore, time taken by sound to cross the given
		space would be $\int_0^t dt_x = \int_0^d \frac{dx}{v_x} \Rightarrow t = \int_0^d \left(\frac{1}{v_1} \times \sqrt{\frac{T_1}{T_x}}\right) dx \Rightarrow t = \frac{1}{v_1} \times \int_0^d \left(\sqrt{\frac{T_1}{\left(\frac{T_1 d + (T_2 - T_1)x}{d}\right)}}\right) dx$. This leads to $t = \frac{1}{v_1} \times \frac{1}{v_1} + \frac{1}{v_1} \times \frac{1}{v_1} + \frac{1}{v_1} +$
		$\frac{\sqrt{T_1 d}}{v_1} \int_0^d \left(\frac{1}{\sqrt{T_1 d + (T_2 - T_1)x}}\right) dx. \text{ Say, } T_1 d + (T_2 - T_1)x = u \text{ we have } dx = \frac{du}{(T_2 - T_1)}, \ t = \frac{\sqrt{T_1 d}}{v_1} \times \int_0^d \left(\frac{1}{\sqrt{u}}\right) \frac{du}{(T_2 - T_1)}. \text{ It }$
		leads to $t = \frac{\sqrt{T_1 d}}{v_1} \times \frac{1}{(T_2 - T_1)} \times \left[2u^{\frac{1}{2}}\right]_0^d$. It, further solves into $t = \frac{\sqrt{T_1 d}}{v_1} \times \frac{\sqrt{d}}{(T_2 - T_1)} \left[T_2^{\frac{1}{2}} - T_1^{\frac{1}{2}}\right]$. This simplifies into
		$t = \frac{2d \times \sqrt{T_1}}{v_1 \left(T_2^{\frac{1}{2}} + T_1^{\frac{1}{2}}\right) \left(T_2^{\frac{1}{2}} - T_1^{\frac{1}{2}}\right)} \times \left(T_2^{\frac{1}{2}} - T_1^{\frac{1}{2}}\right) \Rightarrow t = \frac{2d \times \sqrt{T_1}}{v_1 \left(T_2^{\frac{1}{2}} + T_1^{\frac{1}{2}}\right)} \dots (3)$
		tGiven that speed of sound at 273 K is $v = 330$ m/s. Hence, using (2) we have $v_1 = v \times \sqrt{\frac{T_1}{273}}$ (4). On
		combining (3) and (4) we have $t = \frac{2d \times \sqrt{T_1}}{\left(v \times \sqrt{\frac{T_1}{273}}\right) \left(T_2^{\frac{1}{2}} + T_1^{\frac{1}{2}}\right)} \Rightarrow t = \frac{2d}{v} \times \frac{\sqrt{273}}{\left(\sqrt{T_2} + \sqrt{T_1}\right)}$. This is the answer of first
		part in the algebraic form.
		Numerical value of the time using the given data is $t = \frac{2 \times 33}{330} \times \frac{\sqrt{273}}{(\sqrt{310} + \sqrt{280})} \Rightarrow t = 0.096$ i.e. 96 ms.

	Thus answers are $\frac{2d}{n} \times \frac{\sqrt{273}}{(\sqrt{T_2} + \sqrt{T_1})}$, 96 ms.
	N.B: This an excellent problem involving integration of mathematics with the concepts of physics.
I-15	Speed of sound in liquid is $s = \sqrt{\frac{B}{\rho}}$ where Bulk modulus of elasticity material is $B = \frac{p}{\frac{\Delta V}{V}} \Rightarrow B = \frac{pV}{\Delta V}$ and
	density of kerosene is given to be $\rho = 800 \text{ kg/m}^3$. Accordingly, $s = \sqrt{\frac{pV}{\Delta V}} \Rightarrow s^2 \rho \Delta V = pV \Rightarrow \Delta V = \frac{pV}{s^2 \rho}$.
	Substituting the given data change in volume is $\Delta V = \frac{(2.0 \times 10^5)(1.0 \times 10^{-3})}{(1330)^2 \times 800} = 0.14 \times 10^{-6} \text{ m}^3$ or 0.14 cm ³ , is the answer.
I 16	Δp Δp ΔpV Δr
1-10	Bulk modulus of elasticity material is $B = \frac{1}{\Delta V} \Rightarrow B = \frac{1}{\Delta V}$. It is given that pressure varies between
	$(1.0 \times 10^5 \pm 14)$ Pa $\Rightarrow \Delta p = 14$ Pa, or $\Delta p = 14$ N/m ² . Given that wavelength $\lambda = 0.35$ m and maximum displacement i.e. amplitude of vibration of air particles is $\Delta x = 5.5 \times 10^{-6}$ m and maximum angular strain in the medium is $\frac{\Delta V}{V} = \frac{\Delta x}{\frac{\lambda}{2\pi}} \Rightarrow \frac{\Delta V}{V} = \frac{2\pi\Delta x}{\lambda}$. This leads to required bulk modulus of air is $B = \frac{1}{2\pi} \Delta x$.
	$\frac{\Delta p}{\frac{2\pi\Delta x}{\lambda}} \Rightarrow B = \frac{\lambda\Delta p}{2\pi\Delta x}$. Substituting, the available data $B = \frac{0.35 \times 14}{2\pi(5.5 \times 10^{-6})} = 0.14 \times 10^6 = 1.4 \times 10^5 \text{ N/m}^2$ is the
	N.B. : This problem solution correlating concept of strain in bulk elasticity applied to waves viz. amplitude corresponding to maximum displacement, and wavelength corresponding to volume of gas under consideration. Since in propagation of sound waves particles of medium keep oscillating about their mean position and hence volume of the medium experiencing bulk deformation in wave is taken corresponding to its amplitude. Factor 2π converts displacement to angle displacement required in bulk modulus.
I-17	It is given that source of frequency 2.0 kHz and power $p = 20$ Wof sound is emitting sound uniformly in all directions. Speed of sound is $v = 340$ m/s in air of density 1.2 kg/m ² . Part (a): With the given emission of sound by the source, its intensity at a distance R from the source is
	$I = \frac{p}{4\pi R^2} = \frac{20}{4\pi 6^2} = 0.044 \text{ W/m}^2 \text{ or } I = 44 \text{ mW/m}^2 \text{, is the answer of part (a).}$ Part (b): Intensity of sound in terms pressure amplitude (ΔP), speed of sound in air (v) and density of air
	(ρ) is of sound wave at a point is $I = \frac{(\Delta P)^2}{2\nu\rho} \Rightarrow \Delta P = \sqrt{2\nu\rho I}$. Using the available data we have
	$\Delta P = \sqrt{2 \times 340 \times 1.2 \times 0.044} = 6 \text{ N/m}^2 \text{ is the answer of part (b).}$
	Part (c): Relationship of intensity of sound in terms of displacement amplitude (S_0) , is $I = \frac{(\omega S_0)^2 B}{2v}$. The bulk modulus $B = \frac{p_0}{AV} = \frac{p_0}{(S_0)} = \frac{p_0}{(S_0)} = \frac{p_0}{2\pi f_{S_0}} = \frac{p_0}{\omega S_0} = \frac{vp_0}{\omega S_0}$. Here, p_0 is the pressure
	$\frac{1}{\nu} = 2\pi \left(\frac{\omega}{\lambda}\right) = 2\pi \left(\frac{\omega}{\lambda f}\right) = \frac{1}{\nu} = \frac{\omega}{\nu} = \omega s_0$
	amplitude expressed as Δp in [part (b) above. Thus intensity of sound $I = \frac{2v}{2v} \times \frac{1}{\omega s_0}$. It leads to $I = \frac{\omega s_0 p_0}{2v}$. Therefore, displacement amplitude $s_0 = \frac{2I}{2}$. Using the available data we have $s_0 = \frac{1}{2}$.
	$\frac{1}{2} = \frac{1}{2}$. Therefore, displacement amplitude $S_0 = \frac{1}{2\pi f p_0}$. Using the available data we have $S_0 = \frac{2 \times 0.044}{2 \times 10^{-6}} = 1.2 \times 10^{-6}$ m is the answer of part (c).
	$2 \times \pi \times 2.0 \times 10^3 \times 6^{-1.2} \times 10^{-10}$ m, is the answer of part (c). Thus answers are (a) 44mW/m ² (b) 6.0 na (c) 1.2 × 10 ⁻⁶ m
	N.B.: (1) Pressure, Power, Pressure Amplitude and Density symbols look similar and therefore they need to
	 be handled carefully. (2) Determination of intensity of sound is a culmination of wave equation, displacement and pressure equations of wave, power transmitted by a wave. Moreover, it involves basic principles of mechanics, gas equations, isothermal and adiabatic processes etc. It is a very much involved derivation and hence has been exclusively brought out in Preamble.
	(3) Expression for intensity of sound wave has many variants and choice of a variant in a problem depends upon known variables. This becomes explicit in illustrations of the three parts of this problem.

I-18	Intensity of sound at a distance d from a source of sound of power P is $I = \frac{P}{4\pi d^2} \Rightarrow I \propto \frac{1}{d^2} \Rightarrow \frac{l_2}{l_1} = \left(\frac{d_1}{d_2}\right)^2$.
	Accordingly, $I_2 = I_1 \left(\frac{d_1}{d_2}\right)^2$ and using the given data $I_2 = (1.0 \times 10^{-8}) \left(\frac{5.0}{25}\right)^2 = 4.0 \times 10^{-10}$ W/m ² is the answer
I-19	Intensity of sound at a distance d from a source of sound of power P is $I = \frac{P}{4\pi d^2} \Rightarrow I \propto \frac{1}{d^2} \Rightarrow \frac{l_2}{l_1} = \left(\frac{d_1}{d_2}\right)^2$.
	Accordingly, $I_2 = I_1 \left(\frac{d_1}{d_2}\right)^2$ and using the given data $\frac{I_2}{I_1} = \left(\frac{5.0}{50}\right)^2 = 1.0 \times 10^{-2} \text{ W/m}^2$.
	As per definition intensity of sound in decibel is = $10 \log_{10} \frac{I}{I_0}$. Accordingly, $\beta_1 = 10 \log_{10} \frac{I_1}{I_0}$ at 5.0 m
	away source, and $\beta_2 = 10 \log_{10} \frac{\tau_2}{I_0}$. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{\tau_2}{I_0} - 10 \log_{10} \frac{\tau_1}{I_0}$. This further simplifies
	into $\beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1} \right) \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_1} \right) \Rightarrow \beta_2 = \beta_1 + 10 \log_{10} \left(\frac{l_2}{l_1} \right)$. Using the given
	data $\beta_2 = 40 + 10 \log_{10}(10^{-2}) \Rightarrow \beta_2 = 40 + 10 \times (-2) \Rightarrow \beta_2 = 40 - 20 \Rightarrow \beta_2 = 20$ dB is the answer.
I-20	As per definition intensity of sound in dB is $\beta = 10 \log_{10} \frac{l}{I_0}$. Accordingly, Accordingly, $\beta_1 = 10 \log_{10} \frac{l_1}{I_0}$ at
	5.0 m away source, and $\beta_2 = 10 \log_{10} \frac{l_2}{l_0}$. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0}$. This further
	simplifies into $\beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1} \right) \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_1} \right)$. It is given that $\frac{l_2}{l_1} = 2$ then
	increase in dB is $\Delta\beta = \beta_2 - \beta_1 = 10 \log_{10}(2) \Rightarrow \Delta\beta = 10 \times 0.3 = 3$ dB, this is the answer.
I-21	Intensity of sound at a distance d from the source is $I = \frac{P}{4\pi d^2}$. Further, intensity of sound in dB is expressed
	as $\beta = 10 \log_{10} \frac{I}{I_0}$ where $I_0 = 10^{-12}$ W/m ² . Thus $\beta = 10 \log_{10} \frac{\frac{P}{4\pi d^2}}{I_0} \Rightarrow \beta = 10 \log_{10} \frac{P}{(4\pi d^2) \times I_0}$. Using the
	given data $120 = 10 \log_{10} \frac{2}{(4\pi d^2) \times 10^{-12}} \Rightarrow 120 = \log_{10} \left(\frac{2}{(4\pi d^2) \times 10^{-12}}\right)^{10} \Rightarrow 10^{120} = \left(\frac{2}{(4\pi d^2) \times 10^{-12}}\right)^{10}$. It
	leads to $10^{12} = \frac{2 \times 10^{12}}{(4\pi d^2)} \Rightarrow d^2 = \frac{1}{2\pi} \Rightarrow d = \sqrt{\frac{1}{2\pi}} \Rightarrow d = \sqrt{\frac{1}{2\pi}} = 0.398 \text{ m or } d = 0.40 \text{ m or } 40 \text{ cm.}$
I-22	Intensity of sound in dB is expressed as $\beta = 10 \log_{10} \frac{I}{I_0}$ where $I_0 = 10^{-12}$ W/m ² . Given that $\beta_1 = 50$ dB
	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1} \right) = 10 \log_{10} \left(\frac{l_2}{l_1} \right).$
	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $60 - 50 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow 1 = \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow \frac{l_2}{l_1} = 10^1 \Rightarrow \frac{l_2}{l_1} = 10 \dots (1)$
	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $60 - 50 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow 1 = \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow \frac{l_2}{l_1} = 10^1 \Rightarrow \frac{l_2}{l_1} = 10 \dots (1)$. We know that intensity of sound $I = \frac{p_0^2 v}{2B} \Rightarrow I \propto p_0^2$, since for a given medium speed of sound v and bulk modulus is
	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $60 - 50 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow 1 = \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow \frac{l_2}{l_1} = 10^1 \Rightarrow \frac{l_2}{l_1} = 10 \dots (1)$. We know that intensity of sound $I = \frac{p_0^2 v}{2B} \Rightarrow I \propto p_0^2$, since for a given medium speed of sound v and bulk modulus is constant. Accordingly, $\frac{l_2}{l_1} = \frac{p_2^2}{p_1^2} \dots (2)$.
	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $60 - 50 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow 1 = \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow \frac{l_2}{l_1} = 10^1 \Rightarrow \frac{l_2}{l_1} = 10 \dots (1)$. We know that intensity of sound $I = \frac{p_0^2 v}{2B} \Rightarrow I \propto p_0^2$, since for a given medium speed of sound v and bulk modulus is constant. Accordingly, $\frac{l_2}{l_1} = \frac{p_2^2}{p_1^2} \dots (2)$. Comparing (1) and (2) we have $\left(\frac{p_2}{p_1}\right)^2 = 10 \Rightarrow \frac{p_2}{p_1} = \sqrt{10}$, is the answer.
I-23	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $60 - 50 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow 1 = \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow \frac{l_2}{l_1} = 10^1 \Rightarrow \frac{l_2}{l_1} = 10 \dots (1)$.We know that intensity of sound $I = \frac{p_0^2 v}{2B} \Rightarrow I \propto p_0^2$, since for a given medium speed of sound v and bulk modulus is constant. Accordingly, $\frac{l_2}{l_1} = \frac{p_2^2}{p_1^2} \dots (2)$. Comparing (1) and (2) we have $\left(\frac{p_2}{p_1}\right)^2 = 10 \Rightarrow \frac{p_2}{p_1} = \sqrt{10}$, is the answer. In a classroom, with 50 students, noise level in absence of a teacher is 50 dB. Average output of sound energy I is same across students, total noise level is $I_1 = 50I_0$. Accordingly with number of students
I-23	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $60 - 50 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow 1 = \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow \frac{l_2}{l_1} = 10^1 \Rightarrow \frac{l_2}{l_1} = 10 \dots (1)$.We know that intensity of sound $I = \frac{p_0^2 v}{2B} \Rightarrow I \propto p_0^2$, since for a given medium speed of sound v and bulk modulus is constant. Accordingly, $\frac{l_2}{l_1} = \frac{p_2^2}{p_1^2} \dots (2)$. Comparing (1) and (2) we have $\left(\frac{p_2}{p_1}\right)^2 = 10 \Rightarrow \frac{p_2}{p_1} = \sqrt{10}$, is the answer. In a classroom, with 50 students, noise level in absence of a teacher is 50 dB. Average output of sound energy I is same across students, total noise level is $l_1 = 50l_0$. Accordingly with number of students increasing to 100 the noise level is $l_2 = 100l_0$.
I-23	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $60 - 50 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow 1 = \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow \frac{l_2}{l_1} = 10^1 \Rightarrow \frac{l_2}{l_1} = 10 \dots (1)$.We know that intensity of sound $I = \frac{p_0^2 v}{2B} \Rightarrow I \propto p_0^2$, since for a given medium speed of sound v and bulk modulus is constant. Accordingly, $\frac{l_2}{l_1} = \frac{p_2^2}{p_1^2} \dots (2)$. Comparing (1) and (2) we have $\left(\frac{p_2}{p_1}\right)^2 = 10 \Rightarrow \frac{p_2}{p_1} = \sqrt{10}$, is the answer. In a classroom, with 50 students, noise level in absence of a teacher is 50 dB. Average output of sound energy I is same across students, total noise level is $l_1 = 50l_0$. Accordingly with number of students increasing to 100 the noise level is $l_2 = 100l_0$. Intensity of sound in dB is expressed as $\beta = 10\log_{10}\frac{l}{l_0}$ and hence $\beta_1 = 10\log_{10}\frac{l_1}{l_0}$ and $\beta_2 = 10\log_{10}\frac{l_2}{l_0}$.
I-23	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_1} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $60 - 50 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow 1 = \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow \frac{l_2}{l_1} = 10^1 \Rightarrow \frac{l_2}{l_1} = 10 \dots (1)$.We know that intensity of sound $I = \frac{p_0^2 v}{2B} \Rightarrow I \propto p_0^2$, since for a given medium speed of sound v and bulk modulus is constant. Accordingly, $\frac{l_2}{l_1} = \frac{p_2^2}{p_1^2} \dots (2)$. Comparing (1) and (2) we have $\left(\frac{p_2}{p_1}\right)^2 = 10 \Rightarrow \frac{p_2}{p_1} = \sqrt{10}$, is the answer. In a classroom, with 50 students, noise level in absence of a teacher is 50 dB. Average output of sound energy I is same across students, total noise level is $l_1 = 50l_0$. Accordingly with number of students increasing to 100 the noise level is $I_2 = 100l_0$. Intensity of sound in dB is expressed as $\beta = 10 \log_{10} \frac{l}{l_0}$ and hence $\beta_1 = 10 \log_{10} \frac{l_1}{l_0}$ and $\beta_2 = 10 \log_{10} \frac{l_2}{l_0}$. Thus, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $\beta_2 - \frac{\ell(1)}{\ell_0}$.
I-23	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $60 - 50 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow 1 = \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow \frac{l_2}{l_1} = 10^1 \Rightarrow \frac{l_2}{l_1} = 10 \dots (1)$.We know that intensity of sound $I = \frac{p_0^2 v}{2B} \Rightarrow I \propto p_0^2$, since for a given medium speed of sound v and bulk modulus is constant. Accordingly, $\frac{l_2}{l_1} = \frac{p_2^2}{p_1^2} \dots (2)$. Comparing (1) and (2) we have $\left(\frac{p_2}{p_1}\right)^2 = 10 \Rightarrow \frac{p_2}{p_1} = \sqrt{10}$, is the answer. In a classroom, with 50 students, noise level in absence of a teacher is 50 dB. Average output of sound energy I is same across students, total noise level is $l_1 = 50I_0$. Accordingly with number of students increasing to 100 the noise level is $l_2 = 100I_0$. Intensity of sound in dB is expressed as $\beta = 10 \log_{10} \frac{l}{l_0}$ and hence $\beta_1 = 10 \log_{10} \frac{l_1}{l_0}$ and $\beta_2 = 10 \log_{10} \frac{l_2}{l_0}$. Thus, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $\beta_2 - 50 = 10 \log_{10} \left(\frac{100l_1}{50l_1}\right) \Rightarrow \beta_2 = 50 + 10 \log_{10} 2 \Rightarrow \beta_2 = 50 + 10 \times 0.30 = 53$ dB, is the answer.
I-23	and $\beta_2 = 60$ dB. Therefore, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $60 - 50 = 10 \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow 1 = \log_{10} \left(\frac{l_2}{l_1}\right) \Rightarrow \frac{l_2}{l_1} = 10^1 \Rightarrow \frac{l_2}{l_1} = 10 \dots (1)$.We know that intensity of sound $I = \frac{p_0^2 v}{2B} \Rightarrow I \propto p_0^2$, since for a given medium speed of sound v and bulk modulus is constant. Accordingly, $\frac{l_2}{l_1} = \frac{p_2^2}{p_1^2} \dots (2)$. Comparing (1) and (2) we have $\left(\frac{p_2}{p_1}\right)^2 = 10 \Rightarrow \frac{p_2}{p_1} = \sqrt{10}$, is the answer. In a classroom, with 50 students, noise level in absence of a teacher is 50 dB. Average output of sound energy I is same across students, total noise level is $l_1 = 50l_0$. Accordingly with number of students increasing to 100 the noise level is $l_2 = 100l_0$. Intensity of sound in dB is expressed as $\beta = 10 \log_{10} \frac{l_1}{l_0}$ and hence $\beta_1 = 10 \log_{10} \frac{l_1}{l_0}$ and $\beta_2 = 10 \log_{10} \frac{l_2}{l_0}$. Thus, $\beta_2 - \beta_1 = 10 \log_{10} \frac{l_2}{l_0} - 10 \log_{10} \frac{l_1}{l_0} \Rightarrow \beta_2 - \beta_1 = 10 \log_{10} \left(\frac{l_2}{l_0} \times \frac{l_0}{l_1}\right) = 10 \log_{10} \left(\frac{l_2}{l_1}\right)$. With the given data $\beta_2 - 50 = 10 \log_{10} \left(\frac{100l_1}{10}\right) \Rightarrow \beta_2 = 50 + 10 \log_{10} 2 \Rightarrow \beta_2 = 50 + 10 \times 0.30 = 53$ dB, is the answer.

	difference $\Delta l' = \frac{\lambda}{2}$, i.e. the two waves are anti-phase. Thus $\Delta l - \Delta l' = \frac{ Source }{\sqrt{\lambda}}$
	$2x \Rightarrow \lambda - \frac{\lambda}{2} = 2x \Rightarrow \lambda = 4x.$
	Further, velocity of sound $v = f\lambda \Rightarrow f = \frac{v}{\lambda} \Rightarrow f = \frac{v}{4x}$ Thus, with the $A((I_A, A_A, I_A) = I_B, A_B, I_B))$
	available data $f = \frac{340}{4 \times (2.5 \times 10^{-2})} = 3.4$ kHz is the answer.
1.05	
1-23	two tubes of the apparatus is $\Delta l = \lambda$ i.e. the waves through two tubes at the detector are in phase. And the sound is minimum when the
	difference $\Delta l' = \frac{\lambda}{2}$, i.e. the two waves are anti-phase. Thus $\Delta l - \Delta l' = A \left(\begin{pmatrix} l_{A}, A_{B}, l_{B} \\ l_{B}, A_{B}, l_{B} \end{pmatrix} \right)^{B}$
	$2x \Rightarrow \lambda - \frac{\lambda}{2} = 2x \Rightarrow \lambda = 4x.$
	Further, velocity of sound $v = f\lambda \Rightarrow f = \frac{v}{\lambda} \Rightarrow f = \frac{v}{4x}$.
	Part (a): With the given data $f = \frac{330}{4 \times (16.5 \times 10^{-3})} = 5 \times 10^3$. Hz or 5.00 kHz , is the answer of part (a).
	Part (b): Minimum intensity of sound is $I_1 = I$ and its maximum intensity $I_2 = 9I$. Further, we have $I = \frac{1}{2}$
	$\frac{\omega^2 s_0^2 B}{2v}$ and $I = \frac{p_0^2 v}{B}$ here ω is angular velocity, s_0 is displacement magnitude, p_0 is pressure amplitude, B is bulk modulus and v is speed of wave. It can be seen that in either form; likewise $I \propto s_0^2$ and $I \propto p_0^2$ i.e. both displacement amplitude and pressure amplitude are squarely proportional to intensity of sound and in generic form it can be written as $I \propto A^2$. Therefore, we
	have $\frac{I_2}{I_1} = \frac{A_2^2}{A_1^2} \Rightarrow \frac{A_2}{A_1} = \sqrt{\frac{I_2}{I_1}}$. Using the given data, $\frac{A_2}{A_1} = \sqrt{\frac{9I}{I_1}} = 3$.
	In case of maximum intensity amplitudes of waves through paths, amplitudes are additive, a case of constructive interference, i.e. $I_2 = I_A + I_B$ and in case of minimum intensity the amplitudes are
	subtractive, a case of destructive interference, i.e. $I_1 = I_A - I_B$. Accordingly, we have $\frac{A_2}{A_1} =$
	$\frac{I_A + I_B}{I_A - I_B} = 3 = k$, this is case of componendo-dividendo and accordingly we have $\frac{A_A}{A_B} = \frac{k+1}{k-1} \Rightarrow \frac{A_A}{A_B} = \frac{k+1}{k-1}$
	$\frac{3+1}{3-1} = 2$. Hence, ratio of amplitudes of the two waves arriving at the detector is 2 , is the answer.
I-26	Distance of person from source-1 is $x_1 = 6$ m and source-2 is $x_1 = 6.4$ m. hence $\Delta x = x_1 - x_2 = 6.4 - 6.0 = 0.4$ m. It is given that speed of sound $v = 320$ m/s. Requirement for constructive interference is
	$\Delta x = n\lambda$ here $n \in W$ and destructive interference is $\Delta x = (2n+1)\frac{\lambda}{2} \Rightarrow \Delta x = (2n+1)\frac{\nu}{2f}$. With the
	available data $0.4 = (2n+1)\frac{320}{2f} \Rightarrow f = (2n+1)\frac{320}{0.8} \Rightarrow f = (2n+1)400$. Given that $f_{min} = 500$ Hz
	and $f_{max} = 5000$ Hz, different values of <i>n</i> for destructive interference are as under –
	(i) $n = 0 \Rightarrow f_0 = 400$ Hz, is invalid $f_0 < f_{min}$ (ii) $n = 1 \Rightarrow f_1 = (2 \times 1 + 1)400 = 1200$ Hz, is valid $f_{min} < f_1 < f_{max}$
	(iii) $n = 2 \Rightarrow f_2 = (2 \times 2 + 1)400 = 2000$ Hz, is valid $f_{min} < f_2 < f_{max}$ (iv) $n = 2 \Rightarrow f_2 = (2 \times 2 + 1)400 = 2000$ Hz is valid $f_2 < f_2 < f_{max}$
	(iv) $n = 3 \Rightarrow f_3 = (2 \times 3 + 1)400 = 2600$ Hz, is valid $f_{min} < f_3 < f_{max}$ (v) $n = 4 \Rightarrow f_4 = (2 \times 4 + 1)400 = 3600$ Hz, is valid $f_{min} < f_4 < f_{max}$
	(vi) $n = 5 \Rightarrow f_3 = (2 \times 5 + 1)400 = 4400$ Hz, is valid $f_{min} < f_5 < f_{max}$
	Hence answer is 1200 Hz, 2000 Hz, 2800 Hz, 3600 Hz and 4400 Hz
I-27	At D Two waves are received one direct from S and other reflected from the card board. Intensity changes, on movement of board along the line joining S and D, from maximum intensity (constructive interference) changes to minimum interference (destructive interference) on displacement of the board by $d = 0.2$ m. The change is path length is caused by the displacement of board through any distance is double the
	displacement of the board. Thus, in the instant case $\Delta x = 2d = (2n + 1)\lambda$, here $n \in W$. With the given
	data, $2 \times 0.2 = (2n+1)\frac{336}{2f} \Rightarrow f = (2n+1)\frac{336}{0.8}$. Thus, minimum frequency for change of constructive to
	destructive interference shall be for = 0. Accordingly, $f = \frac{336}{28} = 420$ Hz is the answer.

I-28	Path length of wave from S to D is $x_1 = d$ and path length of reflected wave is $x_2 = 2 \times$
	$\sqrt{\left(\left(\frac{d}{2}\right)^2 + \left(\sqrt{2}d\right)^2\right)} \Rightarrow x_2 = 2 \times \sqrt{\left(\frac{d^2}{4} + 2d^2\right)} \Rightarrow x_2 = 2d \times \sqrt{\frac{9}{4}} = 3d . \text{Thus} \Delta x = x_1 - x_2 = 2d.$
	Further, for constructive interference, $\Delta x = 2d = n\lambda$ and it occurs at wavelength $\lambda = \frac{d}{2}$. Therefore,
	corresponding value of $2d = n\frac{d}{2} \Rightarrow n = 4$.
	It is required to determine displacement s of cardboard away from the source when reflected wave
	becomes anti-phase. Thus new path length is $x'_2 = 2 \times \sqrt{\left(\left(\frac{d}{2}\right)^2 + \left(\sqrt{2}d + s\right)^2\right)}$. Accordingly, revised path
	difference is $\Delta x' = x_1 - x_2' = 2 \times \sqrt{\left(\left(\frac{d}{2}\right)^2 + \left(\sqrt{2}d + s\right)^2\right)} - d = (2 \times n + 1)\frac{\lambda}{2}$. With available data we
	have $2 \times \sqrt{\left(\left(\frac{d}{2}\right)^2 + \left(\sqrt{2}d + s\right)^2\right)} - d = (2 \times 4 + 1)\frac{d}{4} \Rightarrow 2 \times \sqrt{\left(\left(\frac{d}{2}\right)^2 + \left(\sqrt{2}d + s\right)^2\right)} = \frac{13}{4}d$. It leads to
	$\sqrt{\left(\frac{d}{2}\right)^2 + \left(\sqrt{2}d + s\right)^2} = \frac{13}{8}d. \text{ Squaring both sides } \frac{d^2}{4} + \left(\sqrt{2}d + s\right)^2 = \frac{169}{64}d^2 \Rightarrow \sqrt{2}d + s = \sqrt{\frac{169}{64} - \frac{1}{4}} \times d.$
	It leads to $s = \left(\sqrt{\frac{169-16}{64}} - \sqrt{2}\right)d \Rightarrow s = \left(\sqrt{\frac{153}{64}} - 1.41\right)d \Rightarrow s = (1.55 - 1.41)d \Rightarrow s = 0.14d$, is the
	answer.
I-29	Distance of listener from one speaker is $x_1 = 3.2$ m while from the another speaker, as per Pythagoras
	Theorem is $x_2 = \sqrt{(3.2)^2 + (2.4)^2} = 0.8\sqrt{4^2 + 3^2} \Rightarrow x_2 = 0.8 \times 5 = 4$ m. Accordingly, $\Delta x = x_2 - x_1$, or $\Delta x = 0.8$. The frequency range is $f_{\min} = 20$ Hz to $f_{\max} = 20000$ Hz.
	Minimum intensity of sound is head in case of destructive interference for which $\Delta x = (2n+1)\frac{\lambda}{2}$, which
	translates in frequency domain as $\Delta x = (2n+1)\frac{v}{2f} \Rightarrow f = (2n+1)\frac{v}{2\Delta x}$. Here $n \in W$ and possible values
	are 0, 1, 2,3 Such that $f_{\min} \le f \le f_{\max}$. Thus using the available data on the $f_{\min} \le (2n+1)\frac{v}{\lambda r}$ or
	$f_{\min} \le (2n+1)\frac{320}{2\times0.8} \Rightarrow 20 \le 200(2n+1) \Rightarrow 2n+1 \ge \frac{1}{10} \Rightarrow 2n \ge \frac{1}{10} - 1 \Rightarrow 2n \ge -\frac{9}{10} \Rightarrow n \le \frac{9}{20}.$
	leads to $2n + 1 \le 100 \Rightarrow n \le \text{int} \left(\frac{99}{2}\right) \Rightarrow n \le 49$. Thus, desired frequencies in answer are $200(2n + 1) \le 20000$. It
	where $n = 0, 1, 2, 3 \dots 49$.
	N.B.: Required frequencies are determined using mathematics of inequalities.
I-30	Initial distance of detector from source S_1 be d_1 and of source S_2 be d_2 . It will be
	seen that initial path length of detector from both the sources is $l_1 = l_2 =$
	$\sqrt{a^2 + b^2}$. When detector shifts through a distance x along a line parallel to the line joining the two sources, the difference in path lengths is $\Delta l' = l'_1 - l'_2$. And it
	works out to $\Delta l' = \sqrt{(a+x)^2 + d^2} - \sqrt{(a-x)^2 + d^2}$. Here, $a = \frac{20}{2} = 10$ cm,
	$d = 20$ cm. Accordingly $\Delta l' = \sqrt{(10+x)^2 + 20^2} - \sqrt{(10-x)^2 + 20^2}$,
	It solves into $\Delta l' = \sqrt{100 + x^2 + 20x + 400} - \sqrt{100 + x^2 - 20x + 400}$ or St k at a St
	$\Delta l' = \sqrt{500 + x^2 + 20x} - \sqrt{500 + x^2 - 20x}(1)$ (a.x)
	Initially, $\Delta l = l_1 - l_2 = 0$ and both the sources are emitting equal wavelengths $\lambda = 20$ cm which are in same phase hence maximum intensity would occur. But, for first occurrence
	minimum intensity $\Delta l' = \frac{\lambda}{2} = \frac{20}{20} \Rightarrow \Delta l' = 10 \text{ cm}(2).$
	Equating (1) and (2) we have $10 = \sqrt{500 + x^2 + 20x} - \sqrt{500 + x^2 - 20x}$. Squaring the last expression
	$100 = (500 + x^2 + 20x) + (500 + x^2 - 20x) + 2\sqrt{(500 + x^2 + 20x)(500 + x^2 - 20x)}.$ It further
	leads to $100 = 2(500 + x^2) + 2\sqrt{(500 + x^2)^2 - (20x)^2} \Rightarrow \sqrt{(500 + x^2)^2 - (20x)^2} = -(450 + x^2).$
	Again squaring this expression $(500 + x^2)^2 - (20x)^2 = (450 + x^2)^2 \Rightarrow (500 + x^2)^2 - (450 + x^2)^2 = (20x)^2$.

	It further simplifies into $50(950 + 2x^2) = 400x^2 \Rightarrow 950 + 2x^2 = 8x^2 \Rightarrow 6x^2 = 950 \Rightarrow x^2 = \frac{950}{6}$. It
	leads to $x = \sqrt{\frac{950}{6}} \Rightarrow x = \pm 12.6$ cm. Thus, answer is minimum distance by which detector should be
	shifted to perceive minimum intensity of sound is 12.6 cm. N.B.: Here algebraic solution will become longer and hence numerical values have been used to determine Δl for simplification. It is a good example of optimizing algebraic and numerical solution.
I-31	It is given that $d = \pm 1.0 $ and $d \ll D$ and hence $y \approx D\theta$, $AB = y \sin \theta$ and $0Q \approx OP$. At P which is equidistant from the given speakers S ₁ and S ₂ since sound waves would in-phase and hence intensity of the sound would be maximum. When detector moves through a distance y along a line parallel to S ₁ and S ₂ deflection of line joining mid of S ₁ and S ₂ to Q from that of P would be through an angle $\theta \approx \frac{y}{D}$. In new position Q path length from source S ₁ is $l_1 = S_1Q$ and from source S ₂ it is $l_2 = S_2Q$, therefore path difference $\Delta l = l_2 - l_1 \approx S_2R = 2d \sin \theta$. With the given information $D \gg$ Geometrically angle $RS_1S_2 \approx QOP = \theta$. Further, with given data wavelength of the sound $\lambda = \frac{v}{f} \Rightarrow \lambda = \frac{330}{100} = \frac{11}{20} = 0.55$ m. Now taking each part separately,
	Part (a): For first minimum intensity to occur $\Delta l = \frac{\lambda}{2} \Rightarrow 2d \cdot \sin \theta = \frac{0.55}{2} \Rightarrow \theta = \sin^{-1} 0.1375 \Rightarrow \theta = \frac{7055}{2}$
	Part (b): For first maximum sound intensity the requirement is $\Lambda l = \lambda - 2d \sin \theta \Rightarrow \sin \theta = \frac{\lambda}{2}$ or
	For first maximum sound mensity the requirement is $\Delta t = \lambda = 2u^{-1} \sin \theta_1 \Rightarrow \sin \theta_1 = \frac{1}{2d}$, or $\theta_1 = \sin^{-1} \theta_1 = \frac{1}{2d}$, or $\theta_2 = 16^{0}$ is the answer of part (b)
	Part (c): With this logic maxima would continue to occur as per $\Delta l = n\lambda$ and accordingly for successive maxima
	$n = 2; \Delta l_2 = 2\lambda = 2d \cdot \sin \theta_2 \Rightarrow \sin \theta_2 = \frac{2\lambda}{2d} = 0.55 \Rightarrow \theta_2 = \sin^{-1} 0.55 \Rightarrow \theta_2 = 33^0 20' = 33.3^0$
	$n = 3; \ \Delta l_3 = 3\lambda = 2d \cdot \sin \theta_3 \Rightarrow \sin \theta_3 = \frac{3\lambda}{2d} = 0.825 \Rightarrow \theta_3 = \sin^{-1} 0.825 \Rightarrow \theta_3 = 55^0 35' = 55.6^0$
	$n = 4; \ \Delta l_4 = 4\lambda = 2d \cdot \sin \theta_4 \Rightarrow \sin \theta_4 = \frac{4\lambda}{2d} = 1.1$ since for any angle $-1 \le \sin \theta \le 1$ and sin θ_4 is progressively increasing and maximum intensity would not occur $\Delta l > 3\lambda$ Hence, answer for part (c) is 33.3° and 55.6° Thus answers are (a) 7.0° (b) 16° (c) True at 22.2° and 55.6°
	N.B.: It is seen that-
	 a) θ is not quite small to be approximated sin θ ≈ θ b) Δl = nλ = 2d ⋅ sin θ ⇒ θ = sin⁻¹ (^{nλ}/_{2d}) is a non-linear function and hence displacements for successive maxima cannot be determined linearly Δl = nλ = 2d ⋅ θ
I-32	Let, the wave arriving from S ₁ at point P is $y_1 = A \sin\left(\omega\left(t - \frac{x}{v}\right)\right)$, then as per given data wave arriving from S ₂ at point P is $y_2 = A \sin\left(\omega\left(t - \frac{x}{v}\right) + \frac{2\pi}{3}\right)$ and from S ₃ at point P is $y_3 = A \sin\left(\omega\left(t - \frac{x}{v}\right) + \frac{4\pi}{3}\right)$. Thus resultant displacement (which is a vector) would be $y = y_1 + y_2 + y_3 = 0$ and is shown in figure as much as it can be derived trigonometrically. Thus answer is Zero .
I-33	Path length of S ₁ from P is $l_1 = \sqrt{D^2 + x^2}$ and that of S ₂ from P is $l_2 = \sqrt{(D - 2\lambda)^2 + x^2}$, and path

	difference $\Delta l = l_1 - l_2 = D\left(1 + \left(\frac{x}{D}\right)^2\right)^{\frac{1}{2}} - (D - 2\lambda)\left(1 + \left(\frac{x}{D-2\lambda}\right)^2\right)^{\frac{1}{2}}$. Since $D \gg \lambda \Rightarrow D - 2\lambda \to D$, it leads to
	$\Delta l = D \left(1 + \left(\frac{x}{D}\right)^2 \right)^{\frac{1}{2}} - (D - 2\lambda) \left(1 + \left(\frac{x}{D}\right)^2 \right)^{\frac{1}{2}} \Rightarrow \Delta l = 2\lambda \left(1 + \left(\frac{x}{D}\right)^2 \right)^{\frac{1}{2}}.$ Distance of point P at which
	intensity of sound is same as that at point O necessitates $I_P = I_O$ is $\Delta l = \lambda \Rightarrow \lambda = 2\lambda \left(1 + \left(\frac{x}{D}\right)^2\right)^{\frac{1}{2}}$. It leads
	to $\left(1 + \left(\frac{x}{D}\right)^2\right)^{\frac{1}{2}} = \frac{1}{2}$. It leads to $\frac{D}{\sqrt{D^2 + x^2}} = \frac{1}{2} \Rightarrow 4D^2 = D^2 + x^2 \Rightarrow x^2 = 3D^2 \Rightarrow x = \sqrt{3}D$, is the answer.
I-34	With the given figure and data combined a more elaborative figure is drawn. Distance of a point P from source S ₁ , source S ₂ and center of the circular wire O are
	Since of a point 1 non-source s ₁ , source s ₂ and content of the one and $\sqrt{nc} = dc$ $S_1P = l_1, S_2P = l_2, OP = r$ respectively. Then $l_1 = \sqrt{(r\cos\theta + 1.5\lambda)^2 + (r\sin\theta)^2}$
	and $l_2 = \sqrt{(r \cos \theta - 1.5\lambda)^2 + (r \sin \theta)^2}$. These two distances are simplified into $l_1 = \sqrt{r^2 + 3r\lambda \cos \theta}$ and $l_2 = \sqrt{r^2 - 3r\lambda \cos \theta}$. Thus for constructive interference
	$\Delta l = l_1 - l_2 = n\lambda \Rightarrow n\lambda = (r^2 + 3r\lambda\cos\theta)^{\frac{1}{2}} - (r^2 - 3r\lambda\cos\theta)^{\frac{1}{2}}.$ Accordingly,
	$n = \frac{r}{\lambda} \left \left(1 + 3\frac{\lambda}{r}\cos\theta \right)^2 - \left(1 - 3\frac{\lambda}{r}\cos\theta \right)^2 \right . \text{ Given that } r \gg \lambda \Rightarrow \frac{r}{\lambda} \ll \text{ and } \cos\theta \le 1$
	1, hence $3\frac{\lambda}{r}\cos\theta \ll$. Thus both the terms are simplified using Binomial theorem which states that
	$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 \text{ and } \sqrt{1-x} = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 - \frac{5}{128}x^4, \text{ here when } x \ll all \text{ terms containing higher order of } x \text{ can be ignored.}$
	Applying, this binomial approximation we have $n = \frac{r}{\lambda} \left[\left(1 + \frac{1}{2} \times 3\frac{\lambda}{r} \cos \theta \right) - \left(1 - \frac{1}{2} \times 3\frac{\lambda}{r} \cos \theta \right) \right]$, it leads
	to $n = \frac{r}{\lambda} \left[3\frac{\lambda}{r} \cos \theta \right] \Rightarrow n = 3\cos \theta \Rightarrow \cos \theta = \frac{n}{3}.$
	Now that $n \in W$ and $\cos \theta \le 1$ possible values of <i>n</i> are 0, 1, 2, 3. Accordingly, -
	For $n = 1 \Rightarrow \cos \theta = \frac{1}{3} \Rightarrow \theta = 70^{\circ}42' \approx 70^{\circ}5^{\circ}$
	For $n = 0 \Rightarrow \cos \theta = \frac{2}{3} \Rightarrow \theta = 48^{\circ}42' \approx 48.5^{\circ}$
	$\blacktriangleright \text{ for } n = 0 \Rightarrow \cos \theta = \frac{3}{4} = 1 \Rightarrow \theta = 0^0$
	These are angular positions of P in 1 st quadrant, its vertical images shall occur in 2 nd Quadrant with angles $(180 - 90)^0 = 90^0$, $(180 - 70.5)^0 = 109.5^0$, $(180 - 48.5)^0 = 131.5^0$, $(180 - 0)^0 = 180^0$,
	Diagonal images shall occur in 3^{rd} quadrant with angles $(180 + 90)^0 = 270^0$, $(180 + 70.5)^0 = 250.5^0$ (180 + 48.5) ⁰ = 228.5 ⁰ (180 + 0) ⁰ = 180 ⁰ . In fourth quadrant angles, of the images shall
	$be -90^{\circ}, -70.5^{\circ}, and 0^{\circ}.$
	Thus answer is 0°, 48.5°, 70.5°, 90° and similar points in other quadrants. N.B.: This problem involves application of binomial theorem.
1.25	
1-35	Intensity of sound from a source is $I \propto \frac{1}{r^2}$, here p is power of source and r is the radial distance of point of observation from the source. As shown in the given figure PS = PS and the two sources are coherent i.e. of
	same frequency and phase and hence waves from both the sources cause constructive interference. Let distance between the two sources be $2d$, given that intensity of sound at P with both the sources on is I_0 ,
	therefore, intensity of sound at P from each of the sources is $I_{\theta} = \frac{p}{(d \sec \theta)^2} = \frac{I_0}{2} \Rightarrow I_0 = \frac{2p}{(d \sec \theta)^2}$, Now
	taking each part separately -
	Part (a): With one source switched $\frac{I_{45}}{I_{\theta}} = \frac{\overline{(d \sec 45^0)^2}}{\frac{2p}{(d \sec \theta)^2}} \Rightarrow \frac{I_{45}}{I_{\theta}} = \left(\frac{\cos 45^0}{\cos \theta}\right)^2 \Rightarrow I_{45} = (\cos 45^0)^2 \times \frac{I_0}{2} = \frac{1}{2} \times \frac{I_0}{2},$
	or $I_{45} = \frac{I_0}{4}$, is the answer of part (a).

	Part (b): With one source switched $\frac{I_{60}}{I_{\theta}} = \frac{\overline{(d)}}{\overline{(d)}}$ or $I_{60} = \frac{I_0}{8}$, is the answer of part Thus answers are (a) $\frac{I_0}{4}$ (b) $\frac{I_0}{8}$	$\frac{\frac{2p}{\sec(60^0)^2}}{\frac{2p}{d\sec(\theta)^2}} \Rightarrow \frac{I_{60}}{I_{\theta}} = \left(\frac{\cos 60^0}{\cos \theta}\right)^2 \Rightarrow I_{60} = (\cos 60^0)^2 \times \frac{I_0}{2} = \frac{1}{4} \times \frac{I_0}{2},$ (a).
I-36	Open Pipe with Both Ends Open at fundamental frequency $l = 2x\frac{\lambda_0}{4} = \frac{\lambda_0}{2}$ Open Pipe with Both Ends Open at first overtone $l = 4x\frac{\lambda_1}{4} = \lambda_1$ Open Pipe with Both Ends Open at second overtone $l = \frac{3}{2}\lambda_2$ Hence, answers is 850 Hz, 1700 Hz and 2550	In case of given organ pipe at fundamental frequency has its length $l = \frac{\lambda_0}{2} \rightarrow \lambda_0 = 2l$ where anti-nodes are placed at both the open ends and a node at the middle of the pipe. And, $f_0 = \frac{v}{\lambda_0} \Rightarrow f_0 = \frac{v}{2l}$. Using the given data $f_0 = \frac{340}{2 \times 0.2} \Rightarrow$ $f_0 = 850$ Hz. For First overtone there will be Two nodes in between two antinodes at the ends and thus $l = \lambda_1$. as shown in the figure. Accordingly frequency of first overtone $f_1 = \frac{v}{\lambda_1} =$ $\frac{340}{0.20} \Rightarrow f_1 = 1700$ Hz. For second overtone $l = \frac{3}{2}\lambda_2 \Rightarrow \lambda_2 = \frac{2}{3}l$, accordingly $f_2 =$ $\frac{v}{\lambda_2} = \frac{340}{\frac{2}{3} \times 0.20} \Rightarrow f_2 = 2550$ Hz.
I-37	Minimum frequency of a closed organ pipe, end open, is given to be $f_0 = 500$ Hz. Since c ends and an antinode at its middle. It leads to l of sound is $v = 340$ m/s and $\lambda_0 = \frac{v}{f_0} \Rightarrow l = \frac{\overline{f}}{2}$ 17 cm is the answer.	implies one end closed and other closed pipe shall have node at both $l = \frac{\lambda_0}{4}$. Further it is given that speed $\frac{v}{0}{4} \Rightarrow l = \frac{v}{2f_0}$. Using the given data $l = \frac{340}{4 \times 500} = 0.17$ m or $l = 100$
I-38	Distance between Two consecutive nodes d : Using the given data, $f = \frac{328}{2 \times 0.04} = 4.1$ kHz is	$=\frac{\lambda}{2} \Rightarrow \lambda = 2d$. Further, frequency of the source $f = \frac{v}{\lambda} = \frac{v}{2d}$. Is the answer.
I-39	Separation between a node and next antinod frequency of the wave with speed $v = 340$ $\frac{340}{1.00} = 340$ Hz is the answer.	e is $\frac{\lambda}{4} = 0.25$ m is given and hence $\lambda = 1.00$ m. Therefore m/s would be $f = \frac{v}{\lambda}$ which, with the available data, is $f =$
I-40	Fundamental wavelength in a cylindrical tul open at both ends, is $\frac{\lambda_0}{2} = l \Rightarrow \lambda_0 = 2l = 2$ Fundamental frequency of the system is $f_0 = 2$ shall be $f_n = nf_0 \Rightarrow f_n = 340n$, here $n \in N$. $f_n \le f_{max} \Rightarrow 1000 \le 340n \le 2000 \Rightarrow \frac{1000}{340} \ge 2000 \Rightarrow \frac{1000}$	be of length $l = 0.50$ m, $2 \times 0.50 \Rightarrow \lambda_0 = 1.00$ m. $\frac{v}{\lambda_0} = 340$ Hz. In the given system frequencies of n th overtone . It is required to determine frequencies of overtones $f_{\min} \le 1000$ Mz is $n \le \frac{2000}{340}$. It leads to $2.9 \le n \le 5.9$. Hence possible values $3 = 1020$ Hz; $f_4 = 340 \times 4 = 1360$ Hz; $f_5 = 340 \times 5 = 12$ and 1700 Hz
I-41	In a resonance column open end is antinode ar resonance is observed at $l_1 = \frac{\lambda}{4} - e$, in secon $\frac{3\lambda}{4} - e$. It leads to $l_2 - l_1 = \frac{\lambda}{2} \Rightarrow \lambda = 2(l_2 - e)$	ad liquid level form node. Let <i>e</i> is the end correction, and first ad resonance $l_2 = \frac{3\lambda}{4} - e$. Therefore, $l_2 - l_1 = \left(\frac{3\lambda}{4} - e\right) - l_1$. Further, speed of sound is $v = f\lambda \Rightarrow v = 2f(l_2 - l_1)$.

	Part (a): Using the given data $v = 2 \times 400(0.62 - 0.20) \Rightarrow v = 336$ m/s is the answer.
	Part (b): At open end antinode is formed and it at a distance e above the open end. Hence with the
	available data $e = \frac{\pi}{4} - l_1 \Rightarrow e = \frac{2(22-l_1)}{4} - l_1 \Rightarrow e = \frac{3.34}{4} - 0.20 \Rightarrow e = 0.01$ m or 1cm is
	answer of part (b)
	Thus answers are (a) 336 m/s (b) 1 cm
I-42	Let f_{1-0} is the first fundamental frequency of a closed organ pipe P ₁ having length l_1 ; in this case node occurs at closed end and an antinode occurs at open end. Therefore, $\lambda_{1-0} = 4l_1$. Therefore, first overtone wavelength shall be $\lambda_{1-1} = \frac{\lambda_{1-0}}{3}$ and corresponding first overtone frequency shall be $f_{1-1} = 3f_{1-0}$. Accordingly, $f_{1-1} = 3\frac{v}{\lambda_{1-0}} \Rightarrow f_{1-1} = \frac{3v}{4l_1}$ (1) In another open organ pipe P ₂ fundamental frequency f_{2-0} of length l_2 where antinodes occur at open ends and a node occurs at the middle. Therefore, $\lambda_{0-2} = 2l_2$ and fundamental frequency of the organ pipe is $f_{2-0} = \frac{v}{\lambda_{0-2}} \Rightarrow f_{2-0} = \frac{v}{2l_2}$ (2) It is given that $f_{1-1} = f_{2-0}$, hence equating (1) and (2) we have $\frac{3v}{4l} = \frac{v}{2l} \Rightarrow l_2 = \frac{2}{2}l_1 \Rightarrow l_2 = \frac{2}{2} \times 30 \Rightarrow$
	$l_2 = 20$ cm, is the answer.
I-43	Clamped point of the rod, which is at the middle of it, shall be node while free ends of the rod shall act as antinode. At
	Fundamental frequency the rod length $t = \frac{1}{2} \Rightarrow \lambda_0 = 2t$.
	Speed of the longitudinal wave in the rod $v = 3.8 \times 10^{\circ}$ m/s. Hence, fundamental frequency $f_0 = \frac{1}{\lambda_0} \Rightarrow$
	$f_0 = \frac{v}{2l}$. Using the given data $f_0 = \frac{5.8 \times 10^2}{2 \times 1} \Rightarrow f_0 = 1.9 \times 10^3$ Hz or $f_0 = 1.9$ kHz. Hence longitudinal
	standing waves that can be set up in the rod are its higher harmonics $f_n = nf_0 _{n \in N}$. Since it is required to determine frequencies $f_{\min} \leq f_n \leq f_{\max}$. With the available data $20 \leq n(1.9 \times 10^3) \leq 20 \times 10^3$. It,
	further, leads to $0 \le n \le \frac{200}{19}$. Thus integer values are $n \in N: n \le 10$. Thus answer is 1.9 <i>n</i> kHz where
	$n \in N$: $n \leq 10$.
I-44	Fundamental wavelength of an organ pipe of length <i>l</i> is $\lambda_0 = 2l$, and wavelength $\lambda = \frac{v}{f} \Rightarrow 2l = \frac{v}{f} \Rightarrow l = l$
	$\frac{v}{2f}$. This inverse proportionality leads to greatest length of the organ pipe $l_{\text{max}} = \frac{v}{2f_{min}}$. Using the given
	data $l_{\text{max}} = \frac{340}{2 \times 20} = 8.5$ m is the answer.
I-45	In an open organ pipe fundamental wavelength $\lambda_0 = 2l$ and fundamental frequency is $f_0 = \frac{v}{v} \Rightarrow f_0 = \frac{v}{v}$.
	Part (a): Using the given data $f_{1} = \frac{340}{2} = 3.4 \times 10^{3}$ Hz or 3.4 KHz is the answer if part (a)
	$\int art(a) \cdot cosing the given data f_0 = 2 \times 0.05$
	Part (b): Highest harmonic of the organ pipe must be below within the audible range is $n = \operatorname{int}\left(\frac{f_{max}}{f_0}\right)$.
	Here, $\langle \text{int} \rangle$ is a function which returns integer quotient. Accordingly, $n = \text{int}\left(\frac{20}{3.4}\right) \Rightarrow n = 5$ is
	the answer of part (b)
I-46	The problem states of a resonance column with a loudspeaker placed near an open end of a resonance column apparatus. It implies that it has a one end closed. In the system it is given that length of air column
	is $l = \frac{\lambda_0}{4} \Rightarrow \lambda_0 = 4l$. Therefore, fundamental frequency $f_0 = \frac{v}{\lambda_0} \Rightarrow f_0 = \frac{v}{4l}$. Wavelength, at which the air
	column will resonate are $\frac{\lambda_n}{4} = \frac{1}{(2n+1)} \times \frac{\lambda_0}{4} \Rightarrow \lambda_n = \frac{4l}{(2n+1)} \Rightarrow \lambda_n = \frac{4l}{(2n+1)}$. Hence corresponding
	frequencies shall be $f_n = \frac{v}{\lambda_n} \Rightarrow f_n = \frac{v}{\frac{4l}{(2n+1)}} \Rightarrow f_n = (2n+1)\frac{v}{4l} \Rightarrow f_n = (2n+1)\frac{320}{0.8 \times 4}$. It leads to a

	simplification $f_n = 100(2n+1)$ here $n \in W$ provided $f_{min} \leq f_n \leq f_{max} \Rightarrow 20 \leq 100(2n+1) \leq 2000$. It leads to $f_{min} \leq f_n \leq f_{max} \Rightarrow 0 \leq 2n+1 \leq 20 \Rightarrow 0 \leq 2n \leq 20-1 \Rightarrow 0 \leq n \leq 9$. Thus answer is $f_n = 100(2n+1)$ where $n = 0, 1, 2, 3 \dots 9$.
I-47	Resonant frequencies of an open organ pipe are such that $\lambda_0 = 2l \Rightarrow f_0 = \frac{v}{\lambda_0} \Rightarrow f_0 = \frac{v}{2l} \dots (1)$ and resonant
	frequencies are $f_n = nf_0(2)$. Further, it is given that $f_n = 1944$ Hz and $f_{n+1} = 2592$ Hz
	Using (2) and given data, $f_{n+1} - f_n = 2592 - 1944 = (n+1)f_0 - nf_0 \Rightarrow 648 = f_0$. Further using (1) we have $648 = \frac{324}{2l} \Rightarrow l = \frac{324}{2\times648} \Rightarrow l = 0.25$ m or 25 cm is the answer.
I-48	The given system is shown in the figure corresponds to a tube with one end closed and other end open. In the system frequency $f = 512$ Hz is fixed by the tuning fork and speed of sound (v) is fixed by the medium which remains same while piston is pulled out through a distance $\Delta l = 0.32$ m, Therefore wavelength shall be fixed $\lambda = \frac{v}{f}$. In the system node shall exist at the piston and antinode shall exist at open end of the tube, therefore, during resonance $l = (2n + 1)\frac{\lambda}{4}$ where $n \in N$. Further, during initial resonance $l_i = (2n + 1)\frac{\lambda}{4}$ and $l_f = (2n + 3)\frac{\lambda}{4}$. Accordingly, for displacement of piston is $\Delta l = l_f - l_i = (2n + 3)\frac{\lambda}{4} - (2n + 1)\frac{\lambda}{4} \Rightarrow \Delta l = \frac{\lambda}{2} \Rightarrow \lambda = 2\Delta l$. Further, in both the cases medium and frequency of the source remains unchanged and hence speed of sound shall be $v = \lambda f \Rightarrow v = 2\Delta l f$. Using the given data $v = 2 \times 0.32 \times 512 = 327.68$ Hz say 328 Hz is the answer.
I-49	Now wavelength of waves created by tuning fork is $\lambda = \frac{v}{f} \Rightarrow \lambda = \frac{330}{440} \Rightarrow \lambda = 0.75$ m. In the given system water level in both the arms of U-tube are at same level and form node. The tube protruding above the water level in shorter arm is of length say l_1 producing fundamental vibrations such that $l_1 = \frac{\lambda}{4}$. Accordingly, $l_1 = \frac{75}{4} = 18.75$ cm or 18.8 cm , using principle of SDs. In the another tube it produces first overtones and hence length of the tube shall be $l_2 = \frac{3\lambda}{4} = \frac{3\times75}{4} = 56.25$ cm or 56.3 cm , using principle of SDs. Thus answer is 18.8 cm , 56.3 cm .
I-50	Stretched wire when vibrates at its fundamental frequency it has its nodes at fixed ends and middle of wire is antinode. Fundamental frequency of vibration of stretched wire is $f_0 = \frac{1}{2l} \sqrt{\frac{T}{\rho}}$ (1). Here, ρ is mass per unit length and is $\rho = \frac{m}{l}$, where m is mass of the wire and l is length of wire. Using the given data we get $\rho = \frac{4 \times 10^{-3}}{40 \times 10^{-2}} = 10^{-2}$ (2). Given that when the wire vibrates in its second harmonic, it sets vibration in air column in fundamental mode i.e. $f_a = f_1 = 2f_0$ (3). Here, f_a is the frequency of sound vibrations in air, $f_1 = 2f_0$ is the first overtone or second harmonic of the fundamental vibration in wire as given. Fundamental mode of vibration in given air column of length $L = 1$ m, with one end closed by water and other end open, has $L = \frac{\lambda_a}{4} \Rightarrow \lambda_a = 4L$ where λ_a is wavelength of sound in air $\lambda_a = \frac{v}{f_a}$. Here, $v = 340$ m/s is speed of sound in air as given. Accordingly, $f_1 = \frac{v}{\lambda_a} \Rightarrow f_1 = \frac{340}{4 \times 1} \Rightarrow f_1 = 85$ Hz(4) Using value of l and (2) and (4) we have get $T = (0.4)^2 \times (85)^2 \times (10^{-2}) \Rightarrow T = 11.56$ N or 11.6 N is the answer .
I-51	Given wire has mass per unit length $\rho = \frac{m}{l} = \frac{10 \times 10^{-3}}{30 \times 10^{-2}} = \frac{10^{-2}}{3}$ and vibrating in its fundamental mode. We know that

	$f_0 = \frac{1}{2l} \sqrt{\frac{T}{\rho}}$. Further, the organ pipe, closed at one end, is resonating with the wire in its fundamental mode i.e. $f_0 = \frac{v}{4l'}$
	. Here, $l' = 0.50$ m is the length of the air column in the pipe. Equating the two expressions of f_0 we have $\frac{1}{2l}\sqrt{\frac{T}{\rho}} = \frac{v}{4l'}$.
	This leads to $T = \rho \left(\frac{\nu l}{2l'}\right)^2 \Rightarrow T = \left(\frac{10^{-2}}{3}\right) \left(\frac{340 \times 0.30}{2 \times 0.50}\right)^2 \Rightarrow T = 347$ N, is the answer.
I-52	Frequency in gaseous medium $f \propto \sqrt{T}$, Therefore, we shall have $\frac{f+\Delta f}{f} = \sqrt{\frac{T+\Delta T}{T}} \Rightarrow 1 + \frac{\Delta f}{f} = \left(1 + \frac{\Delta T}{T}\right)^{\frac{1}{2}}$.
	Since, $\Delta T \ll T$ and hence neglecting second order terms $\left(\frac{\Delta T}{T}\right)^2$ we have $1 + \frac{\Delta f}{f} = 1 + \frac{1}{2} \cdot \frac{\Delta T}{T} \Rightarrow \frac{\Delta f}{f} = \frac{\Delta T}{2T}$,
I-53	Frequency in gaseous medium $f \propto \sqrt{T}$, Therefore, we shall have $\frac{f+\Delta f}{f} = \sqrt{\frac{T+\Delta T}{T}} \Rightarrow 1 + \frac{\Delta f}{f} = \left(1 + \frac{\Delta T}{T}\right)^{\frac{1}{2}}$.
	Since, $\Delta T \ll T$ and hence neglecting second order terms $\left(\frac{\Delta T}{T}\right)^2$ we have $1 + \frac{\Delta f}{f} = 1 + \frac{1}{2} \cdot \frac{\Delta T}{T} \Rightarrow \frac{\Delta f}{f} = \frac{\Delta T}{2T}$.
	Accordingly, $\Delta f = \frac{f\Delta T}{2T} \Rightarrow \Delta f = \frac{293 \times 2\Delta T}{21202} = 1 \Rightarrow f' = f + \Delta f = 293 + 1 = 294$ Hz is the answer.
	N.B.: (1) Temperature in this case are in thermodynamic scale.
	(2) Taking temperatures as at (1) above $\Delta T \ll T$ is valid and hence $\Delta f = \frac{f}{2T}$
I-54	The copper rod of length $l = 100$ cm is clamped at $l_1 = 25$ cm one end. Hence length of other free end is $l_2 = l - l_1 = 100 - 25 = 75$ cm.
	Distance between heaps is $d = 5$ cm. In Kundt's tube heaps are formed in air at nodes where $d = \frac{\lambda_a}{2} \Rightarrow$
	$\lambda_a = 2d$. and hence frequency of sound is $f = \frac{v}{\lambda} \Rightarrow f = \frac{v}{2d} = \frac{340}{2 \times 0.05} = 3400$ Hz. The clamped end serves as node while free ends will serve as antinode at resonant frequencies. From the
	given geometry wavelength in copper rod is $\lambda_2 = 4l_1$. Since, $\frac{l_2}{l_1} = \frac{0.75}{0.25} = 3$, hence length l_2 will vibrate at
	Third harmonic. Further, speed of wave is $v = f\lambda$ and hence in copper rod wave will have same frequency but a different wavelength, hence $v_{cu} = f\lambda_2 \Rightarrow v_{cu} = f \times 4l_1 \Rightarrow v_{cu} = 3400 \times 4 \times 0.25 \Rightarrow v_{cu} = 3400$ m/s is the answer.
I-55	Given that heaps of powder in Kundt's apparatus are separated by $d = 6.5 \times 10^{-2}$ m, hence wavelength of sound in air is $\lambda = 2d$. Further the steel rod of length $l = 1.0$ m is clamped at the center. The clamped and
	shall form node while free ends of length $\frac{l}{2}$ from clamp shall form antinode. When rod vibrates at
	fundamental frequency $\frac{\lambda_{cu}}{4} = \frac{l}{2} \Rightarrow \lambda_{cu} = 2l.$
	Frequency being constant, as it depends upon the source, hence speed of sound $v = \lambda f$. It solves into $v_{cu} = 2lf \Rightarrow v_{cu} = 2 \times 1.0 \times 2600 \Rightarrow v_{cu} = 5200$ m/s. Likewise speed of sound in air $v_a = 2df \Rightarrow v_a = 2 \times (6.5 \times 10^{-2}) \times 2600 \Rightarrow v_a = 338$ m/s. Hence, answer is 5200 m/s, 338 m/s.
I-56	Given that $f_1 = 476$ Hz and $f_2 = 490$ Hz, produce $n = 2$ Hz beats at some intermediate frequency f. This
	is possible when $ f_1 - f = f_2 - f = n \Rightarrow f - f_1 = n \Rightarrow f = 476 + 2 \Rightarrow f = 478$ Hz is the answer.
I-57	Given that f_1 Hz, number of beats produced with another tuning fork of frequency $f_2 = 256$ is $n = 4$ Hz. When tuning fork of frequency f_1 is loaded with wax its mass increases its frequency would decrease to f' and it produces beats $n' = 6$ Hz. This data implies that $f_2 > f_1$. Therefore, $f_2 - f_1 = n \Rightarrow f_1 = 256 - 4$, or $f_1 = 252$ Hz, is the answer.

I-58	Frequency of a source is $f = \frac{v}{\lambda}$. With the given wavelengths $\lambda_1 = 32$ cm and $\lambda_2 = 32.2$ cm speed of sound
	$v = 350$ m/s we have $f_1 = \frac{v}{h_1} \Rightarrow f_1 = \frac{350}{0.32} = 1094$ Hz and $f_2 = \frac{v}{h_2} \Rightarrow f_2 = \frac{350}{0.322} = 1087$. Therefore
	number of beats $n = f_1 - f_2 \Rightarrow \mathbf{n} = 1094 - 1087 = 7$ per second is the answer.
1.50	
1-59	A tuning fork for frequency f_1 Hz creates beats $n = 5$ per second with another tuning fork of frequency f_2 Hz. Frequency f_2 resonates with a closed organ pipe of $l = 0.40$ m at its fundamental mode. Since, length
	of closed organ pipe $l = \frac{\lambda}{2} \Rightarrow \lambda = 4l$. Speed of sound is $\nu = 320$ m/s and hence $f_2 = \frac{\nu}{2} = \frac{320}{2} = 200$.
	Further, it is stated that when first tuning fork is slightly loaded with wax number of beats decrease; this is
	effect of decrease in frequency of the first form due to increase in its mass. This can happen only if $f_1 > f_2$
	therefore $f_1 - f_2 = n \Rightarrow f_1 = f_2 + n$. Using the available data $f_1 = 200 + 5 = 205$ Hz, is the answer.
I-60	Erroquency of vibration of a stratched string $f = \frac{1}{T} \int_{T}^{T} here I$ is length of the string a is mass per unit
	Frequency of violation of a stretched string $f = \frac{1}{2l}\sqrt{\frac{1}{\rho}}$, here t is length of the string, ρ is mass per unit
	length and T is tension in the string. In plano l and ρ are same and it is only T that affects frequency.
	Hence, we can say that $f \propto \sqrt{T}$. It leads to $\frac{72}{f_1} = \sqrt{\frac{72}{T_1}} \Rightarrow \frac{300}{600} = \sqrt{\frac{72}{T_1}} \Rightarrow \frac{72}{T_1} = (1 + 0.01)^2$. Since $0.01 \ll 10^{-10}$
	hence the binomial expression can be approximated to $\frac{T_2}{T_1} = 1 + 2 \times 0.01$. It leads to $\frac{T_2}{T_1} = 1.02$ is the
	answer.
I-61	Given that tuning fork has frequency $f_1 = 256$ Hz. Let f_2 is the frequency of wire of length $l = 0.25$ m
	vibrating in fundamental mode. In case of stretched wire $f_{2} = \frac{1}{T} \int_{T}^{T} \Rightarrow f_{2} \propto \frac{1}{T}$ (1) Further frequency of
	basis $n = f_{l} - f_{l} $ (2) When length of wire is reduced then as per (1) there is increase in f and as per
	(2) it would leads to reduction in n only when $f_1 > f_2$. It is given that initially $n = 4 \Rightarrow f_2 = f_1 - 4 = 10^{-1}$
	252 Hz(3)
	It is required to determine length of wire l', without changing other parameters, at which new frequency $f_1 = f_2 + f_1 + f_2 + f_1 + f_2 + f_2 + f_3 + f_4 + f_2 + f_4 + f$
	$f_2 = f_1$. Using (1) $\frac{1}{f_2'} = \frac{1}{l} \Rightarrow l' = \left(\frac{1}{f_2'}\right) l$. Using available data $l' = \left(\frac{1}{f_1}\right) l \Rightarrow l' = \left(\frac{1}{256}\right) 25 \Rightarrow l' = 24.60$
	cm. Hence length of wire is shortened by $\Delta t = l - l^2 \Rightarrow \Delta l = 25 - 24.60 = 0.40$ cm is the answer.
I-62	This is a case of Doppler's effect where apparent frequency to the scooter driver is $f' = f\left(\frac{V-V_0}{V-V}\right)(1)$ In
	this case observer is scooter driver who is approaching the policeman, while source of sound is policeman.
	Therefore relative velocity of the source w.r.t. observer is $V_s = \frac{36 \times 10^3}{3.6 \times 10^3} \Rightarrow V_s = 10$ m/s while $V_o = 0$. Thus
	using the available data $f' = 2000 \left(\frac{340}{240, 40}\right) \Rightarrow f' = 2000 \left(\frac{34}{22}\right) = 2.06$ kHz is the answer.
I-63	It is given that frequency of sound $f = 2400$ Hz. Car. The source of sound is moving with a velocity $V_s = \frac{18 \times 10^3}{18 \times 10^3}$
	$\frac{10\times10}{3.6\times10^3}$ \Rightarrow $V_s = 5$ towards an observer standing on the road infront of the car i.e. $V_o = 0$. Speed of sound in
	air is $V = 340$ m/s. Hence, as per Doppler's effect apparent frequency is $f' = f\left(\frac{v-v_0}{v-v_s}\right)$. Using the given
	data $f' = 2400 \left(\frac{340}{340-5}\right) \Rightarrow f' = 2400 \times \frac{340}{335} = 2436$ Hz, is the answer.
I.C.A	
1-64	Given that car sounding whistle of frequency $f = 1250$ Hz is moving with a speed /2 kmph or $V_s = 72 \times 10^3$, $W = 20$ m/s. W have a family of frequency f = 1240 m/s. The multiplication of the family of the f
	$\frac{1}{3.6 \times 10^3} \Rightarrow v_s = 20$ m/s. Velocity of sound is $v = 340$ m/s. The problem is on Doppler's effect and it has two parts as under –
	Part (a): Observer is standing infront of the car i.e. source is moving towards observer and hence V_s is
	(+)ve. Accordingly, $f' = 1250\left(\frac{340}{340-20}\right) \Rightarrow f' = 1250\left(\frac{34}{32}\right) = 1328$ Hz is answer of part (a).
	Part (b): The observer is standing behind the car i.e. source is moving away from the observer and hence

	$V_{\rm s}$ is (-)ve. Accordingly, $f' = 1250 \left(\frac{340}{340 - (-20)} \right) \Rightarrow f' = 1250 \left(\frac{34}{36} \right) = 1181 \text{Hz}$ is answer of
	part (a). Thus answers are (a) 1328 Hz (b) 1181 Hz
1-65	A train making whistle is approaching platform with a speed of 54 kmph or $V_s = \frac{54 \times 10^3}{3.6 \times 10^3} \Rightarrow V_s = 15$ m/s and frequency apparent to the observer at the platform is of frequency $f' = 1620$ Hz. Speed of sound is 332 m/s. As per Doppler's Effect $f' = f\left(\frac{V}{V-V_s}\right) \Rightarrow f = f'\left(\frac{V-V_s}{V}\right)$. It is required to determine frequency of whistle apparent to an observer standing on platform after the train has crossed the platform. It implies that source is moving away from the platform and hence in this part V_s becomes (-)ve. Accordingly, apparent frequency to the observer is $f'' = f\left(\frac{V}{V-(-V_s)}\right) \Rightarrow f'' = f'\left(\frac{V-V_s}{V}\right)\left(\frac{V}{V+V_s}\right)$. Thus, using the available data we have $f'' = 1620\left(\frac{332-15}{332}\right)\left(\frac{332}{332+15}\right) \Rightarrow f'' = 1620 \times \frac{317}{332} \times \frac{332}{347} \Rightarrow f'' = 1620 \times \frac{317}{347} = 1480$ Hz, is the answer.
I-66	Insert Figure When bat is flying at $V_b = 6$ m/s, between two walls X and Y, producing the waves of frequency produced by the bat is $f = 4.5 \times 10^4$ Hz. Velocity of sound in air is $V = 330$ m/s. It is important to note that during reflection there is no change of frequency. As per Doppler's effect $f' = f\left(\frac{V-V_0}{V-V_s}\right)$ Apparent frequency of waves interacting between wall-Y and the bat is analyzed in two parts – (i) Frequency f_Y perceived by the wall-Y in front of the bat: in this case $V_0 = 0$ and $V_s = V_b = 6$ m/s. Accordingly, using the available data $f_Y = f\left(\frac{V-V_0}{V-V_s}\right) \Rightarrow f_Y = f\left(\frac{330}{330-6}\right) \Rightarrow f_Y = f\left(\frac{330}{324}\right)$ (ii) Frequency f_Y' of the wave reflected from wall-Y as perceived by the bat: in this case bat is the observer and travelling against the direction of the reflected wave and hence $V_0 = -6$ m/s, while . the wall-Y has acting as a source has $V_s = 0$. Therefore, $f_Y' = f_Y\left(\frac{V-V_0}{V-V_s}\right) \Rightarrow f_Y' = f_Y\left(\frac{330-(-6)}{330}\right)$. It leads to $f_Y' = f\left(\frac{330}{324}\right)\left(\frac{336}{324}\right) \Rightarrow f_Y' = f\left(\frac{336}{324}\right)$ Hz. Likewise, apparent frequency of waves interacting between wall-X and the bat is analyzed in two parts – (i) Frequency f_X perceived by the wall-X behind the bat: in this case $V_0 = 0$ and $V_s = -V_b = -6$ m/s. Accordingly, using the available data $f_X = f\left(\frac{V-V_0}{V-V_s}\right) \Rightarrow f_X = f\left(\frac{330}{330-(-6)}\right) \Rightarrow f_X = f\left(\frac{330}{336}\right)$ (ii) Frequency f_X' of the wave reflected from wall-X as perceived by the bat: in this case bat is the observer and travelling the direction of the reflected wave and hence $V_0 = 0$ and $V_s = -V_b = -6$ m/s. Accordingly, using the available data $f_X = f\left(\frac{V-V_0}{V-V_s}\right) \Rightarrow f_X = f\left(\frac{330}{330-(-6)}\right) \Rightarrow f_X = f\left(\frac{330}{336}\right)$ (ii) Frequency f_X' of the wave reflected from wall-X as perceived by the bat: in this case bat is the observer and travelling the direction of the reflected wave and hence $V_0 = 6$ m/s, while . the wall-X has acting as a source has $V_S = 0$. Therefore, $f_X' = f_X\left(\frac{330}{330-(-6)}\right) \Rightarrow $
I-67	This is case of Doppler's Effect according to which apparent frequency is $f' = f\left(\frac{V-V_o}{V-V_s}\right)$. Given that speed of sound is $V = 330$ m/s, speed of source of sound (bullet train) is $V_s = 220$ m/s, and since bullet train passes a person and $V_s \gg V_o$ and hence by approximation $V_o = 0$. It involves two cases - Case 1: Now when train approached the person, direction of train and sound is same and hence V_s is (+)ve, accordingly apparent frequency while approach is $f_a = f\left(\frac{V}{V-V_s}\right) \Rightarrow f_a = f\left(\frac{330}{330-220}\right) \Rightarrow f_a = 3f$. Case 2: Now when train separating i.e. moving away approached the person, directions of train and sound are opposite and hence V_s is (-)ve, accordingly apparent frequency while approach is $f_s = f\left(\frac{V}{V-(-V_s)}\right) \Rightarrow f_s = f\left(\frac{330}{330-(-220)}\right) \Rightarrow f_s = 0.6f$.

	Accordingly fractional change is $\Delta f = \frac{f_a - f_s}{f_a} \Rightarrow \Delta f = \frac{3f - 0.6f}{3f} \Rightarrow \Delta f = \frac{2.4}{3} = 0.8$ is the answer.
I-68	The position man with respect to the two trains is shown in the figure. Accordingly, angle made by line of travel of sound by the trains is such that $\tan \theta = \frac{0.5}{1.2} \Rightarrow \cos \theta = \frac{1}{\sqrt{1 + \tan^2 \theta}} = \frac{1}{\sqrt{1 + (\frac{0.5}{1.2})^2}}$, it leads to $\cos \theta = 0.92$. Accordingly velocity source-A of sound (the train) in the direction of the observer is $V'_{SA} = V_{SA} \cos \theta = V_S \cos \theta$ and that of source-B of sound (the train) in the direction of the observer is $V'_{SB} = V_{SB} \cos(\pi - \theta) = -V_S \cos \theta$. Here, for uniformity of units $V_S = \frac{72 \times 1000}{3600} = 20$ m/s As per Doppler's effect $f' = f\left(\frac{V-V_0}{V-V_S}\right) = f\left(\frac{V}{V-V_S}\right)$, since it is given that man is standing i.e. $V_0 = 0$, and sound always travels radially and hence V remains unaffected. Accordingly, apparent frequency of train A to the person is $f_A = f\left(\frac{V-V_0}{V-V_S}\right) = f\left(\frac{V}{V-V'_{SA}}\right) \Rightarrow f_A = 500\left(\frac{340}{340-20\times0.92}\right) \Rightarrow f_A = 528.6 \approx 529$ Hz. Likewise, apparent frequency of train B to the person is $f_{AB} = f\left(\frac{V}{V-V'_{SB}}\right) \Rightarrow f_A = 500\left(\frac{340}{340-(-20\times0.92)}\right) \Rightarrow f_A = 474.2 \approx 474$ Hz. Hence answer is 529 and 474 Hz.
I-69	4 beats are heard by the violinist playing $f = 440$ Hz note standing near the track. The violinist in the train is also playing $f = 400$ Hz note which appears to the violinist near the track $(V_o = 0)$ is $f' = f\left(\frac{V-V_o}{V-V_s}\right) \Rightarrow$ $f' = f\left(\frac{V}{V-V_s}\right)$. Therefore, number of beats heard by the violinist standing near the track $n = f - f' =$ $\left f - f\left(\frac{V}{V-V_s}\right)\right \Rightarrow n = f\left(\frac{V_s}{V-V_s}\right) \Rightarrow \frac{V}{V_s} = \frac{f+n}{n} \Rightarrow V_s = V\frac{n}{f+n}$. Using the given data $V_s = 340\frac{4}{440+4} =$ 3.06 m/s. It leads to $V_s = \frac{3.06*3600}{1000} = 11$ kmph, is the answer.
I-70	As per Doppler's effect apparent frequency $f' = f\left(\frac{v-v_o}{v-v_s}\right)$. In system velocity of source is $V_s = 0$ accordingly $\Rightarrow f' = f\left(\frac{v-v_o}{v}\right)$. Now in respect of source in the front, velocity of observer is against direction of velocity of sound hence it shall be (-)ve, therefore $f' = \frac{256(332-(-3.0))}{332} \Rightarrow f' = 258.3 \approx 258$ Hz. As regards source behind the man velocity of observer is in direction of velocity of sound hence it shall be (+)ve, therefore $f' = \frac{256(332-3)}{332} \Rightarrow f'' = 253.7 \approx 254$ Hz. Hence, frequency of beats $n = f'' - f' $. Using the values derived above $n = 258.3 - 253.7 \Rightarrow n = 4.6$ Hz is the answer.
I-71	Source infront of the standing listener i.e. $V_0 = 0$, the source is moving in the direction sound travelling to the listener and V_s is (+)ve. Therefore, apparent frequency as per Doppler's effect is $f_f = f\left(\frac{V-V_0}{V-V_s}\right) \Rightarrow f_f = \frac{fV}{V-V_s}$. Using the available data $f_f = \frac{512\times330}{330-5.5} = 520.68$ Hz. Likewise, the other source behind the observer it is moving against the direction of sound from it travelling to the listener and hence V_s is (-)ve. Accordingly, $f_b = f\left(\frac{V}{V-(-V_s)}\right) \Rightarrow f_b = \frac{fV}{V+V_s}$. Again using the available data $f_b = \frac{512\times330}{330+5.5} = 503.61$. Hence, frequency of beats $n = f_f - f_b $. Using the values derived above $n = 520.68 - 503.61 \Rightarrow n = 17.07 \approx 17.1$ Hz is the answer. Since number of beats is less than 20 Hz i.e. beyond the audible range of frequency, beats heard by the listener is Nil, is the answer.

I_72	As per geometry velocity of the source of frequency $f = 500$ Hz rotating in
1-/2	As per geometry velocity of the source of nequency $f = 500$ Hz folding in circle of radius $r = \frac{100}{2}$ at a speed $n = 5.0$ revolutions per second. Therefore
	velocity of the source is $v = 2\pi rn$ and in SI units $v = r\omega \Rightarrow v = r(2\pi n) \Rightarrow$
	$v = \left(\frac{100}{\pi} \times \frac{1}{100}\right) (2\pi \times 5) \Rightarrow v = 10 \text{ m/s.}$
	As per Doppler's effect is $f' = f\left(\frac{V-V_0}{V-V_s}\right) \Rightarrow f' = \frac{fV}{V-V_s}$ since observer is V_s
	stationary. That sound travels radially and apparent frequency would be maximum when source is
	travelling towards the listener i.e. V_s is (+)ve and thus $f_{max} = \frac{J^v}{V - V_s}$. Using the available data $f_{max} =$
	$\frac{500\times332}{332-10} = 515.53 \text{ Hz, say } \boldsymbol{f_{max}} = 516 \text{ Hz.}$
	Likewise, source is travelling away from the listener i.e. V_s is (-)ve and thus $f_{min} = \frac{300\times332}{332-(-10)}$ Using the
	available data $f_{min} = \frac{500 \times 332}{342} = 485.4$ Hz, say $f_{min} = 485$ Hz. Hence, answer is 485 and 516 Hz.
I-73	Speed of the two trains approaching towards each other @ 90 kmph. One of
	the train is source and hence its velocity is velocity of the source $V_s =$
	$\frac{90\times1000}{3600} = 25$ m/s. The other train, the observer, is also travelling with same
	speed but against velocity of sound and hence $V_0 = -25$ m/s.
	Therefore, as per Doppler's effect apparent frequency by the observer train is $f' = 500 \left(\frac{1}{350-25}\right) =$
	$576.9 \approx 577$ Hz, is the answer.
I-74	As per Doppler's effect $f' = f\left(\frac{V-V_0}{V_0}\right) \Rightarrow f' = \frac{f(V-V_0)}{V_0}$ where policeman the source of sound of frequency
	$f = 16$ kHz is stationary and hence $V_s = 0$. Since, the observer is moving against the sound and hence V_o
	is (-)ve. Taking the pleas of the driver to be correct $f' > 20$ kHz, and using the available data
	$\frac{16(330 - (-V_0))}{330} > 20 \Rightarrow 330 + V_0 > 330 \times \frac{20}{16} \Rightarrow V_0 > 330 \times \left(\frac{5}{4} - 1\right) \Rightarrow V_0 > \frac{330}{4} \Rightarrow V_0 > 82.5 \text{ m/s. This}$
	minimum value of V_0 translates to 297 kmph is answer of part (a). Maximum attainable speed of with ordinary cars is about 150 kmph hence plea of the driver is impractical
	is answer of part (b).
	Thus answers are (a) 297 kmph (b) Impractical
I-75	First car (source of sound) is moving at 108 kmph and hence $V = \frac{108 \times 1000}{108 \times 1000} = 30$ m/s. The car in the front
	(absorbed) is moving at 72 kmph and hence $V = \frac{72 \times 1000}{20} = 20$ m/s. Both of them are since in the direction
	(observer) is moving at /2 kinpi and hence $v_0 = \frac{1}{3600} = 20$ m/s. Both of them are since in the direction
	of the sound and hence V_s and V_o shall have (+)ve values in the formula of Doppler's effect $f = f(\frac{1}{V-V_s})$.
	Thus, using the available data $f' = 800 \left(\frac{330-20}{330-30}\right) = 826.7 \approx 827$ Hz is the answer.
I-76	In this case of Doppler's effect $f' = f\left(\frac{V-V_0}{V-V_0}\right)$ both the submarines are approaching each other. Velocity of
	the submarine creating sound signal is $V_s = 36$ kmph $\Rightarrow V_s = \frac{36 \times 1000}{2600} = 10$ m/s, is (=)ve since it is moving
	in the direction of the sound. The second submarine approaching the source is observer and travelling
	against direction of sound $V_o = 54$ kmph $\Rightarrow V_0 = \frac{54 \times 1000}{3600} = 15$ m/s shall be (-)ve.
	Part (a): Using the available data apparent frequency of the observer submarine is $f' = 2000 \left(\frac{1500 - (-15)}{1500 - 10}\right)$,
	it leads to $f' = 2033.56 \approx 2034$ Hz is answer of part (a).
	Part (b): When the signal of frequency f' is reflected by the second submarine, it velocity becomes source velocity in the direction of reflected sound and shall be $(+)$ we have source velocity $V' = 15$
	m/s. But, the first submarine in this case become observer travelling against direction of reflected
	sound and hence it shall be (-)ve of value $V'_o = 10$. Therefore, again as per Doppler's effect $f'' = 0$
	$f'\left(\frac{v-v_o}{v-v'}\right)$, using the available data $f'' = 2034\left(\frac{1500-(-10)}{1500-15}\right) = 2067.8 \approx 2068$ Hz, is answer of

	part (b). Thus answers are (a) 2034 Hz (b) 2068 Hz
I-77	Given frequency of sound $f = 800$ Hz. As per Doppler's Effect frequency perceived by an observer in line of motion of source having velocity V_s when it is approaching the detector with velocity $V_o = 0$; at in this
	duration V_s shall be (+)ve. Accordingly, $f' = f \frac{V}{V - V_c}$.
	When, source moves away from the detector its velocity becomes against velocity of sound reaching
	detector and hence V_s shall be (+)ve. Hence, $f'' = f \frac{v}{v - (-v_s)} = f \frac{v}{v + v_s}$. Bandwidth of the frequency detected
	by the detector is $\Delta f = f' - f'' = f \frac{V}{V - V_s} - f \frac{V}{V + V_s}$. Using the available data $8 = 800 \left(\frac{340}{340 - V_s} - \frac{340}{340 + V_s}\right)$. It
	solves into $\frac{1}{34000} = \frac{2V_s}{(340)^2 - V_s^2} \Rightarrow V_s^2 + 68000V_s - (340)^2 = 0$. This being quadratic equation we have
	$V_s = \frac{1}{2} \Rightarrow V_s = \frac{1}{2} \Rightarrow V_s = \frac{1}{2} \Rightarrow V_s = 340(\sqrt{10001 - 100})$. It solves into $V_s = 340(100.005 - 100) = 340 \times 0.005 \Rightarrow V_s = 1.7 \text{ m/s}.$
	Given that source of sound is oscillating in SHM with an amplitude $A_s = 0.17$ m and in SHM $v = A\omega$.
	Accordingly, in the instant case $V_s = A_s \omega_s \Rightarrow 1.7 = 0.17 \omega_s \Rightarrow \omega_s = \frac{-1}{0.17} = 10$ rad/s.
	Further, $\omega = 2\pi f \Rightarrow \omega = \frac{2\pi}{T} \Rightarrow T = \frac{2\pi}{\omega} \Rightarrow T = \frac{2\pi}{10} = 0.628$. Thus time period of the oscillation of the
	source is $T = 0.63$ s, is the answer.
I-78	Velocity of biker as shown in the figure is $u = 4\sqrt{2}$ m/s. At the time of N making sound pulse it is aligned towards the standing observer $(V = 0)$ at
	$45^{0.1}$ Therefore, velocity of source $V_a = u \cos 45^{0}$ it leads to $V_a = 4\sqrt{2} \times \frac{1}{2} = \frac{1}{4\sqrt{2}} \frac{4\sqrt{2}}{\sqrt{2}}$
	4 m/s Given that velocity of sound $V = 334$ m/s and frequency of the source
	$f = 1670$ Hz, apparent frequency, as per Doppler's effect $f' = f \frac{V}{V} \Rightarrow$
	$f' = 1650 \frac{334}{334-4} \Rightarrow f' = 1670 \text{ Hz is the answer.}$
1.70	
1-79	$f' = f\left(\frac{V-V_o}{V-V_c}\right)$ and given that velocity of source of frequency $f = \frac{Y}{V_c}$
	660 Hz is given to be $v = 26$ m/s and observer is moving along a line $x = 336$ m i.e. the line is parallel to Y-axis. Velocity of sound is $V = 330$ m/s. Sound since travels radially and hence V remains $X = 26 \text{ m/s}$
	constant, velocity of source $V_s = 0$ since it fixed at origin, but
	frequency as under –
	Case(a): In this case velocity of observer w.r.t. sound is $V_0 = v \cos(-\theta) = v \cos\theta$, here, with the given
	data $\tan \theta = \frac{336}{140} \Rightarrow \cos \theta = \frac{1}{1 + \tan^2 \theta} \Rightarrow \cos \theta = \sqrt{\frac{1}{1 + \left(\frac{336}{140}\right)^2}} \Rightarrow \cos \theta = 0.38$. It is shown in the
	figure that V_o is against velocity of sound and hence it will be (-)ve. Accordingly, using the
	available data $f'_{a} = f\left(\frac{V - (-V_{o})}{V}\right) \Rightarrow f'_{a} = f\left(\frac{V + V_{o}}{V}\right) \Rightarrow f'_{a} = 660\left(\frac{330 + 26 \times 0.38}{330}\right) = 680$ Hz, is
	answer of part (a). $(V-0)$
	Case (b): In this case $\theta = 90^{\circ}$ and hence $V_o = v \cos 90^{\circ} = 0$ and hence $f'_b = f\left(\frac{1}{V}\right) \Rightarrow f'_b = f = 660$
	Hz is answer of part (b).
	Case(c): In this case velocity of observer w.r.t. sound is $V_0 = v \cos(-\theta) = v \cos \theta$, here, with the given
1	

	figure that V_0 is in the direction of the velocity of sound and hence it will be (+)ve. Accordingly,
	using the available data $f'_c = f\left(\frac{V-V_o}{V}\right) \Rightarrow f'_c = 660\left(\frac{330-26\times0.38}{330}\right) = 640$ Hz, is answer of part
	(c).
	Thus answers are (a) 680 Hz (b) 660 Hz (c) 640 Hz.
I-80	This is the case of Doppler's effect and apparent frequency $f' = f\left(\frac{V-V_o}{V-V_s}\right)$ is required to be determined
	where velocity of train $v_t = 108$ kmph which equates to $v_t = \frac{108 \times 1000}{3600} = 30$ m/s. Velocity of sound is
	V = 340 m/s and its frequency is $f = 500$. Taking each part separately –
	Part (a): Passenger (the observer) is sitting inside train which is blowing whistle. Thus velocities of $(V-0)$
	passenger and whistle with respect to train are Zero and hence $f' = f\left(\frac{1}{V-0}\right) \Rightarrow f' = f = 1$
	500 Hz, is answer of part (a).Part (b): Observer is standing on the ground near the track and train (the source) has just passed the observer, therefore, velocity of source shall be against direction of sound and it shall be (-)ve.
	Accordingly, $f' = f\left(\frac{v - v_0}{v - (-v_s)}\right) \Rightarrow f' = 500\left(\frac{340 - 0}{340 - (-30)}\right) \Rightarrow f' = 459$ Hz is the answer of part
	(b). 36×1000
	Part (c): When wind is blowing with a velocity $V_w = 36 \text{ kmph} \Rightarrow V_w = \frac{3600}{3600} = 10 \text{ m/s}$, which is
	medium of the propagation of sound effective velocity of sound is $V' = V \pm V_w$; the V_w is additive when wind is blowing in the direction of propagation of sound and subtractive when it is blowing in opposite direction. Accordingly, taking effect of blowing wind formula of
	Doppler's effect gets slightly modified as $f' = f\left(\frac{V'-V_0}{V'-V_c}\right)$. This part has two cases same as that of
	part (a) and part (b) respectively. And they shall be solved with identical data except that V is replaced with V'. Accordingly –
	Case 1: Apparent frequency for the passenger is $f' = f\left(\frac{V'-0}{V'-0}\right) \Rightarrow f' = f = 500$ Hz is answer of part
	(c-1).
	Case 2: Apparent frequency of the observer standing near the track is $f' = f\left(\frac{V'-V_0}{V'-(-V_s)}\right) \Rightarrow f' =$
	$500\left(\frac{(340-10)-0}{(340-10)-(-30)}\right) \Rightarrow f' = 458$ Hz is answer of part (c-2).
	Thus answers are (a) 500 Hz (b) 459 Hz (c-1) 500 Hz and (c-2) 458 Hz.
1.81	
1-01	This problem is on Doppler's effect where apparent frequency is $f' = f\left(\frac{-v}{v-v_s}\right)$, In the problem dog on the
	ground is just notional and has no significance since it is neither source nor observer. Given that velocity of 12×1000 10 (-5)
	cyclist (source) is $V_c = 12 \text{ kmph} \Rightarrow V_c = \frac{1}{3600} = \frac{1}{3}$ m/s. Frequency of source $f = 1600$ Hz Taking
	Part (a): Since wall is the observer and hence $V_0 = 0$, and source is moving in the direction of sound and
	hence $V_s = V_c$ is (+)ve. Accordingly, using the available data $f' = 1600 \left(\frac{330}{220 - \frac{10}{2}}\right) \Rightarrow f' = 1616$
	Hz, is answer of part (a).
	Part (b): Reflected whistle has wall as source of frequency f' and the cyclist as an observer travelling against direction of propagation of sound. Therefore, in this case $V_s = 0$ and $V_0 = -V_c$.
	Accordingly, apparent frequency to the cyclist will be $f'' = f'\left(\frac{V-V_o}{V-V_s}\right) \Rightarrow f'' =$
	$1616\left(\frac{330-(-\frac{10}{3})}{330}\right) \Rightarrow f'' = 1632$ Hz is answer of part (b).
	Answers are (a) 1616 Hz (b) 1632 Hz.
I-82	Speed of signal is $V = 330$ m/s and man standing on the road producing signal of frequency $f = 1600$ Hz
1.02	has $V_{c} = 0$. The sound is reflected from the car and returns to the man. It is required to determine apparent

	frequency heard by the man. This problem, as per Doppler's effect where $f' = f\left(\frac{V-V_o}{V-V_s}\right)$, is solved in two
	stages as under – Stage 1: Apparent frequency for the car where car is travelling in thet direction of sound with a velocity
	$V_c = 72 \text{ kmph} \Rightarrow V_c = \frac{72 \times 1000}{3600} = 20 \text{ m/s}$ and hence $V_0 = V_c$. Hence, apparent frequency for the
	car is $f' = 1600 \left(\frac{330-20}{330}\right) = 1600 \left(\frac{310}{330}\right)$ Hz.
	Stage 2: The car becomes the source of reflected sound of frequency f' travelling against the direction of the sound and hence $V_s = -V_c$ while the man being the observer $V_0 = 0$. Accordingly, it leads to $f'' = f'\left(\frac{330}{330\cdot(-20)}\right) = 1600\left(\frac{310}{330}\right)\left(\frac{330}{350}\right) \Rightarrow f'' = 1600\left(\frac{310}{350}\right) \Rightarrow f'' = 1417$ Hz is the answer.
I-83	Circuit that model of our $U = 54$ knows $U = 54 \times 1000 = 15$ m/s. Consists sound of free model of the second of
105	Given that speed of car $v_c = 54$ kmph $\Rightarrow v_c = \frac{15}{3600} = 15$ m/s. Car emits sound of frequency $f = 400$ Hz and speed of sound is $V = 335$ m/s. Solving each part separately –
	Part (a): Wave length of the sound emitted by the car in the front will be $\lambda = \frac{V_{s-c}}{V_{s-c}}$, here velocity of sound
	w.r.t. car, both in same direction, is $V_{s-c} = V - V_c = 335 - 15 \Rightarrow V_{s-c} = 320$ m/s. Hence, $\lambda =$
	$\frac{320}{400} = 0.8 \text{ m or } \lambda = 80 \text{ cm}$, is the answer of part (a).
	Part (b): As per Doppler's Effect apparent frequency $f' = f\left(\frac{V-V_0}{V-V_0}\right)$, where f is frequency of the sound
	perceived by the cliff with $V_0 = 0$ and $V_s = V_c$ in the direction of sound. Therefore, $f' =$
	$400\left(\frac{335}{335-15}\right) \Rightarrow f' = \frac{400 \times 335}{320}$. Therefore, wavelength of the reflected wave is $\lambda' = \frac{V}{f'}$. It leads to
	$\lambda' = \frac{335}{\frac{400 \times 335}{230}} \Rightarrow \lambda' = \frac{320}{400} \Rightarrow \lambda' = 0.8 \text{ m or } \lambda' = 80 \text{ cm, is answer of part (b).}$
	Part (c): For persons sitting in the car is the observer and moving against direction of the reflected sound
	and hence $V_o = -V_c$ and $V_s = 0$, while velocity of sound remains V. Hence apparent frequency for a person sitting in the car shall be $f'' = f' \left(\frac{V - (-V_c)}{V} \right) \Rightarrow f'' = \left(\frac{400 \times 335}{V} \right) \left(\frac{335 + 15}{V} \right) = 437.5$
	Hz. Since last digit is 5 and last-but-one digit is an odd number therefore as per principle of
	Significant Digits, $f'' = 437$ Hz is answer of part (c).
	Part (d): No of beats per second heard by person sitting in car $n = f^{n} - f = 425 - 400 = 25$ per second. Since frequency of beats is more than maximum perceivable limit of 15 Hz and hence beats
	cannot be heard, is answer of part (d).
	Answers are (a) 80 cm (b) 80 cm (c) 438 Hz (d) Beats cannot be heard.
I-84	Frequency of the signal $f = 400$ Hz produced by an operator sitting at base camp ($V_s = 0$) The signal is
	reflected back by car moving at a speed V_c towards source of sound i.e. velocity of car is against speed of sound and hence it shall be (-)ve, accordingly $V_c = -V_c$ Thus frequency perceived at car as per Doppler's
	effect is $f' = f\left(\frac{V-V_0}{V-V}\right) \Rightarrow f' = 400\left(\frac{324+V_c}{2}\right).$
	For the operator to be hearing reflected sound the car is a source of frequency f' moving in the direction of
	sound and hence it is (+)ve and in this case $V_s = V_c$. While, the operator sitting at base camp becomes
	observer such that $V_o = 0$. Hence, apparent frequency of the reflected sound to the operator is $f = C(V - V_0)$
	$f'\left(\frac{1}{v-v_s}\right)$. Using the available data $410 = 400\left(\frac{1}{324}\right)\left(\frac{1}{324-v_c}\right) \Rightarrow 41(324-v_c) = 40(324+v_c)$. It
	leads to $81V_c = 324 \Rightarrow V_c = 4$ m/s or 14.4 kmph is the answer.
I-85	Listener stands at Q, 330 and hence $V_o = 0$, velocity of sound $V = 330$ m/s. Source of sound moving along
	X-axis is with a velocity $v = 22$ m/s continuously emits sound of 2.0 kHz and at $t = 0$, the source crosses the origin P. It has three parts –
	Part (a): Time taken by sound at P to reach the listener at a distance d is $t = \frac{d}{dV}$ since sound travels
	radially. Hence, $t = \frac{330}{230} = 1$ second, is the answer of part (a).
	Part (b): Since angle between velocity of source at P and path of travel of sound PQ is 900, hence velocity
	of source along the line is $V_s = v \cos 90^0 = 0$, hence apparent frequency to the listener as per

	Doppler's effect is $f' = f \frac{V - V_0}{V - V_s} \Rightarrow f' = 2.0 \times 10^3 \times \frac{330 - 0}{330 - 0} \Rightarrow f' = 2.0$ is the answer of part
	(b). Point (a): At the instance when sound emitted by source at D reaches the listener at O is $n = n \times t = 22 \times 1$
	or $x = 22$ m is the answer of part (b).
	Thus answer are (a) $t = 1$ second (b) 2.0 kHz (c) at $x = 22$ m.
I-86	Let at t=0, the position of the source moving along Y-axis is $(0, y)$ with velocity $v = 22$ m/s, a pulse of sound produced at this position reaches listener situated at (660 m,0) when the source reaches the origin as shown in the figure; this implies $V_0 = 0$. Thus time (t) taken by source and sound pulse to travel the distance SO and SL is same and hence as per geometry $t = \frac{y}{v} = \frac{y}{22} = \frac{\sqrt{y^2 + (660)^2}}{330} \Rightarrow (15y)^2 - y^2 = (660)^2 \Rightarrow 14 \times 16 \times y^2 = (660)^2$. It leads to $y = \frac{660}{\sqrt{224}}$.
	At the position or instance of creation of sound pulse, velocity of source along the velocity of sound $V_s = V \cos \theta = 22 \times \frac{y}{\sqrt{y^2 + (660)^2}} \Rightarrow V_s = 22 \times \frac{\frac{660}{\sqrt{224}}}{\sqrt{\left(\frac{660}{\sqrt{2}}\right)^2 + (660)^2}} \Rightarrow V_s = 22 \times \frac{1}{\sqrt{225}} \Rightarrow V_s = 100$
	$\frac{22}{15}$. As per Doppler's effect apparent frequency $f' = f\left(\frac{V-V_0}{V-V_s}\right)$. Using the available data $f' =$
	$4000\left(\frac{330}{330-\frac{22}{15}}\right) \Rightarrow f' = 6017.9 \text{ or } f' = 6018 \text{ Hz, is the answer.}$
	N.B.: Calculation of velocity of source along the line of travel of sound pulse at the instance of emission is to be taken into account, is key to the solution.
I-87	When source gets closest to it the sound of frequency $f = 1200$ Hz reaching the detector was emitted by source moving along the line with a speed $v = 170$ m/s at (-)t as shown in the figure where $t = \frac{x}{v} = \frac{\sqrt{x^2 + 200^2}}{v} \Rightarrow \frac{x}{170} = \frac{\sqrt{x^2 + 200^2}}{340} \Rightarrow 2x = \sqrt{x^2 + 200^2} \Rightarrow 3x^2 = 200^2 \Rightarrow x = \frac{200}{2}$ m. Therefore, angle made by line of travel of
	sound with the line of motion of source is such that $\cos \theta = \frac{x}{\sqrt{x^2 + 200^2}} \Rightarrow \cos \theta =$
	$\frac{\sqrt{3}}{\sqrt{\left(\frac{200}{\sqrt{3}}\right)^2 + 200^2}} = \frac{200}{200 \times 2}$, It leads to $\cos \theta = \frac{1}{2}$. Therefore, velocity of source along the line
	of travel of sound is $V_s = v \cos \theta = 170 \times \frac{1}{2}$ or $V_s = 85$ m/s. The source is since stationary hence $V_o = 0$. Taking solution part-wise –
	Part (a): As per Doppler's effect, apparent frequency for the detector is $f' = f\left(\frac{V-V_0}{V-V_s}\right) \Rightarrow f' =$
	$1200\left(\frac{340}{340-85}\right) \Rightarrow f' = 1600$ Hz is answer of part (a).
	Part (b): Detector would detect frequency 1200 Hz when velocity of source at the time of emission of sound is perpendicular to the line of travel OQ i.e. $\alpha = 90^{\circ}$. Time taken by sound to travel
	distance OQ is $t' = \frac{500}{V} = \frac{200}{340}$ during which source would have travelled a distance PR equal to
	$x' = v \times t'$ it leads to $x' = 170 \times \frac{200}{340} = 100$ m. Therefore, distance QR is $d' = \sqrt{x'^2 + 200^2}$ it
	solves into $d' = \sqrt{100^2 + 200^2} = 100\sqrt{5} \Rightarrow d' = 224$ m is the answer of part (b).
I-88	When an object tied to a string is whirled vertically condition of minimum velocity for the string to just
	remain tight is when particle moves in a circular trajectory of radius $r = 1.6$ m is $\frac{mv^2}{r} = mg \Rightarrow v =$
	$\sqrt{rg} \Rightarrow v = \sqrt{1.6 \times 10} \Rightarrow v = 4$ m/s. It is given that observer is at a large distance aligned to the center of circle and hence velocity of source at its highest position A $V_{sA} = 4$ m/s. At the lowest position B velocity
	of source V_{sB} shall be determined with the principle of conservation of energy $\frac{1}{2}mV_{sB}^2 = \frac{1}{2}mV_{sA}^2 + mgh$. It
	leads to $V_{SB}^2 = V_{SA}^2 + 2gh \Rightarrow V_{SB}^2 = 4^2 + 2 \times 10 \times 2r \Rightarrow V_{SB}^2 = 16 + 2 \times 10 \times 2 \times 1.6 \Rightarrow V_{SB}^2 = 80$. It

	solves into $V_{sB} = 8.9$ m/s. As per Doppler's effect apparent frequency is $f' = f\left(\frac{V-V_0}{V-V_s}\right)$. Now, taking each
	part separately – Part (a): Maximum apparent frequency to the observer denominator of the expression of Doppler's Effect
	is minimum. This would occur when V_{SB} which greater than V_{SA} is in the direction of the sound
	and accordingly using the available data $f' = f\left(\frac{1}{V-V_{sA}}\right) \Rightarrow f' = 500\left(\frac{1}{330-8.9}\right) \Rightarrow f' = 514$ Hz
	is the answer of part (a). Part (b): In respect of positions C and D when source is at the height of the center as per conservation of
	energy velocity of source would be $\frac{1}{2}mv'^2 = \frac{1}{2}mV_{sA}^2 + mgr \Rightarrow v'^2 = 4^2 + 2 \times 10 \times 1.6 \Rightarrow$
	$v'^2 = 16 \times 3 \Rightarrow v' = 4\sqrt{3} = 6.9$ m/s. Not it is has two cases with observer situated vertically
	above center of the circle.
	Case 1: when source is at C, as shown in the figure velocity of source is in the direction of the propagation of sound and hence it is positive or $V_{sC} = 6.9$ m/s and hence apparent frequency
	shall be $f'' = f\left(\frac{v-v_0}{v-v_{sc}}\right) \Rightarrow f'' = 500\left(\frac{330}{330-6.9}\right) \Rightarrow f'' = 511$ Hz.
	Case 2: When source is at D, as shown in the figure velocity of source is against the direction of the
	propagation of sound and hence it is negative or $V_{sD} = -6.9$ m/s and hence apparent
	frequency shall be $f^{\prime\prime\prime} = f\left(\frac{v-v_0}{v-v_{sD}}\right) \Rightarrow f^{\prime\prime\prime} = 500\left(\frac{330}{330-(-6.9)}\right) \Rightarrow f^{\prime\prime\prime} = 490$ Hz.
	Thus answers are (a) 514 Hz (b) 400 Hz and 511 Hz
	Thus answers are (a) 514 Hz (b) 490 Hz and 511 Hz
I-89	This problem involves application of Doppler's effect but not of the standard formulation, rather instance
	diagram shown since velocity he source is constantly changing with uniform acceleration. Let D is the
	distance between the source and time period the first cycle of the sound wave emitted by the source at $t = \frac{D}{2}$
	0 to reach the observer $t_1 = \frac{1}{v}$. Time period of the wave is $T = -\frac{1}{f}$ and before emitting the second cycle the
	source having velocity expressed by Second equation of Motion $d = \frac{1}{2} a T^2 \Big _{u=0}$ and distance required to
	travel by the second cycle emitted at $t = T$ to reach the source is $D' = D - d$ and time taken in this travel
	is $t_2 = T + \frac{D}{V} \Rightarrow t_2 = T + \frac{D-u}{V}$.
	Thus time period of the wave apparent to the observer is duration between two successive cycles just after the source starts at which apparent frequency is required to be determined and it is $T' = T + (t - t)$
	The source starts, at which apparent neglected is required to be determined, and it is $T' = T + (t_1 - t_2) \Rightarrow$ $T' = (T + \frac{D-d}{2}) = \frac{D}{2} \Rightarrow T' = T - \frac{d}{2} \Rightarrow T' = T - \frac{1}{2}aT^2 \Rightarrow T' = \frac{1}{2}a\frac{1}{2} \Rightarrow T' = \frac{1}{2}a\frac{1}{2} \Rightarrow T' = \frac{1}{2}a\frac{1}{2}a$
	$\begin{bmatrix} 1 & - (1 & V) \\ V & V \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ V & V \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ V & V \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2V & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ F & 2V \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ F & 2$
	$\frac{2Vf^2}{2Vf^2}$. Therefore, frequency of the wave apparent to the observer situated at a large distance from observer
	is $f' = \frac{1}{T'} \Rightarrow f' = \frac{1}{\frac{2Vf^2}{2Vf^2}} \Rightarrow f' = \frac{2Vf^2}{2Vf - a}$ is the answer.
	N.B.: This solution involves application of Doppler's Effect from its basic principle. Here, deliberately
	Inequency is represented by <i>j</i> instead of v and velocity by <i>v</i> instead of <i>v</i> as generally used to avoid confusion to students not very much conversant with difference between notations <i>v</i> and <i>v</i> .
	confusion to students not very much conversant with difference between notations v and v.
I-90	Frequency of the signal f_0 Hz produced by a stationary source ($V_s = 0$) The signal is reflected back by two
	cars moving at a speeds v_1 and v_2 respectively. Given that difference in frequency of the reflected sound
	from the two cars Δf is 1.2% of f_0 . It is required to determine difference in speeds of the two cars. This mechanics achieved he determining emperator frequency f'' of car 1 first and using it to determine f'' to make
	end result
	Car-1: Initially velocity of car approaching the source is against the speed of sound and hence it shall be (-)
	ve, accordingly $V_0 = -v_1$. Thus frequency apparent to the car as per Doppler's effect is $f' =$
	$f\left(\frac{V-V_{o}}{V-V_{o}}\right) \Rightarrow f_{1}' = f_{0}\left(\frac{330-(v_{1})}{330}\right) \Rightarrow f_{1}' = f_{0}\left(\frac{330+v_{1}}{330}\right).$
	The source perceiving the reflected sound the car is a source of frequency f'_1 moving in the direction of
	sound and hence it is (+)ve and in this case $V_c = v_1$. While, the operator being stationary $V_c = 0$. Hence,

apparent frequency of the reflected sound to the operator is $f_1^{"} = f_0 \left(\frac{330+v_1}{330}\right) \left(\frac{330}{330-v_1}\right) \Rightarrow f_1^{"} = f_0 \left(\frac{330+v_1}{330-v_1}\right)$. **Car-2:** In case of Car-2 the process is same as that of Cae-1 except that v_1 is replaced with v_2 , accordingly, we shall have $f_2^{"} = f_0 \left(\frac{330+v_2}{330-v_2}\right)$. Thus $\Delta f = \frac{|f_1^{"}-f_2^{"}|}{f_0} \times 100 \Rightarrow 1.2 = \frac{|f_0 \left(\frac{330+v_1}{330-v_1}\right) - f_0 \left(\frac{330+v_2}{330-v_2}\right)|}{f_0} \times 100 \Rightarrow 1.2 = \left| \left(\frac{330+v_1}{330-v_1}\right) - \left(\frac{330+v_2}{330-v_2}\right) \right| \times 100$. It is given that $v_1 \ll 330$ and $v_2 \ll 330$ and hence $\frac{v_1v_2}{330^2} \ll$ and hence ignored. It further solves into $\frac{1.2}{100} = \left| \left(\frac{330+v_1}{330-v_1}\right) - \left(\frac{330+v_2}{330}\right) \right| \Rightarrow \frac{1.2}{100} = \left| \frac{2\times330\times(v_1-v_2)}{330^2} \right|$. Let $\Delta v = |v_1 - v_2|$ Accordingly, $\frac{1.2}{100} = \frac{2\Delta V}{330} \Rightarrow \Delta V = \frac{1.2\times330}{200}$. It leads to $\Delta V = 1.98$ m/s or 7.1 kmph. Since answer is asked in nearest integer and hence difference in speeds of cars is 7 kmph is the answer. N.B.: In this problem approximation plays an important role in simplification of solution.