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Electromagnetism: Magnetic Effect of Electric Current  

Typical Questions (Set-2) 

I-01 Given that emf of each of the battery is 𝐸 = 5 V and 

resistances are marked in the circuit. 

Applying Kirchhoff’s Current law in loop ABCF, the emfs in 

braches Fa and BC are opposed to each other. Hence, current 

𝑖1 =
𝐸−𝐸

𝑅1+𝑅2
=

0

𝑅1+𝑅2
⇒ 𝑖1 = 0….(1). This is independent of 

values of resistances. 

Likewise, in loop FCDE, 𝑖2 =
𝐸−𝐸

𝑅2+𝑅3
=

0

𝑅2+𝑅3
⇒ 𝑖2 = 0…(2). 

Thus current in branch CF 𝑖 = 𝑖1 − 𝑖3. Combining (1) and (2) current 𝑖 = 0. Thus in entire circuit current is 

zero and hence there will be no magnetic field at any point either within or outside the circuit. Hence proved. 

I-02 The problem states that current in both the conductors are equal, but is silent whether they are in the same 

direction or in the opposite directions. Taking current in upward 

direction 𝑖 = 𝑖𝑗̂ therefore current in the opposite direction would be 𝑖′⃗⃗⃗ =
𝑖(−𝑗̂). 

Magnetic field at appoint at distance 𝑟 = 𝑟𝑗̂ from a long wire carrying current 𝑖 

applying Biot-Savart’s Law is 𝐵⃗⃗ =
𝜇0𝑖

2𝜋𝑟
(−𝑖̂) …(1), as shown in the figure. 

Three-dimensional unit vectors are also shown in the figure for convenience. 

Lorentz’s Force Law force stipulates force on a charge in presence of electric 

field as  𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗)…(2). In the instant case there no electric field 

(𝐸⃗⃗ = 0), the entire effect of force is due to current. Accordingly (2) is modified 

as 𝐹⃗ = 𝑞(0 + 𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(3). 

Current is rate of flow of charge 𝑞 = 𝜆𝑙…(4).  Here, λ is charge per unit length and 𝑙 is length of the conductor. As per 

the Principle of Electrical an electrical system charge on conductor is being continuously replenished such 

that 
𝑑𝑄

𝑑𝑡

⃗⃗⃗⃗⃗
= 𝑞𝑣⃗ = (𝜆𝑙)𝑣⃗ ⇒ 𝑞𝑣⃗ = 𝑙(𝜆𝑣⃗) ⇒ 𝑞𝑣⃗ = 𝑙𝑖…(5).  

Figure shows both the cases when currents in both conductors is in the same direction and opposite. Accordingly, 

combing (3) and (5) with the stipulation of current in the beginning – 

(a) Currents in the same Direction: Force on them would be 𝐹⃗ = 𝑙𝑖 × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑙(𝑖𝑘̂) × 𝐵(−𝑖̂) ⇒ 𝐹⃗ = −𝐵𝑖𝑙𝑘̂ × 𝑖̂. 

The vector product leads to 𝐹⃗ = 𝐵𝑖𝑙(−𝑗̂). The (-)ve sign depicts force is in direction opposite to the vector 𝑟 i.e. 

attractive. 

(b) Currents in the same Direction: Force on them would be 𝐹⃗ = 𝑙𝑖′⃗⃗⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑙 (𝑖(−𝑘̂)) × 𝐵(−𝑖)̂ ⇒ 𝐹⃗ = 𝐵𝑖𝑙𝑘̂ ×

𝑖̂. The vector product leads to 𝐹⃗ = 𝐵𝑖𝑙𝑗̂. The (+)ve sign depicts force is in direction of the vector 𝑟 i.e. repulsive. 

Despite direction of the force in two cases discussed above magnitude of the force is 𝐹 = 𝐵𝑖𝑙…(6). Thus magnitude of 

the force combining (1) and (6) is 𝐹 =
𝜇0𝑖

2𝜋𝑟
𝑖𝑙 ⇒ 𝐹 =

𝜇0𝑖2𝑙

2𝜋𝑟
. Since, absolute permeability 𝜇0 = 4𝜋 × 10−7, it leads to 

𝐹 =
(4𝜋×10−7

)×𝑖2𝑙

2𝜋𝑟
⇒ 𝐹 =

(2×10−7
)×𝑖2𝑙

𝑟
…(7) 

Using the given data in (7),  2.0 × 10−5 =
(2×10−7)×202×0.1

𝑟
⇒ 𝑟 = 0.4m or 40 cm is the answer. 



I-03 A per Biot-Savart’s Magnetic field at point placed at a distance 𝑑 from a long conductor 

carrying current 𝑖 is 𝐵⃗⃗ =
𝜇0𝑖

2𝜋𝑑
𝑛̂ …(1). Here 𝑛̂ is a unit vector perpendicular plane 

containing direction vector of 𝑟̂ and 𝑑̂. For the placement of current carrying conductors 

as shown in figure current in conductor A will produce magnetic field at B is  𝐵⃗⃗BA =
𝜇0𝑖

2𝜋𝑟
(−𝑖)̂…(2) and at C is 𝐵⃗⃗CA =

𝜇0𝑖

2𝜋(2𝑟)
(−𝑖)̂ ⇒ 𝐵⃗⃗CA =

𝜇0𝑖

4𝜋𝑟
(−𝑖)̂…(2).  

Likewise., magnetic at B due to current in conductor at C is   𝐵⃗⃗BC =
𝜇0𝑖

2𝜋𝑟
(𝑖̂)…(3) and 

at C is 𝐵⃗⃗AC =
𝜇0𝑖

2𝜋(2𝑟)
(𝑖)̂ ⇒ 𝐵⃗⃗CA =

𝜇0𝑖

4𝜋𝑟
(𝑖)̂…(4). 

Similarly, magnetic field A due to current in conductor B is   𝐵⃗⃗AB =
𝜇0𝑖

2𝜋𝑟
(𝑖̂)…(5) and at C is 𝐵⃗⃗CB =

𝜇0𝑖

2𝜋(2𝑟)
(−𝑖)̂ ⇒ 𝐵⃗⃗CA =

𝜇0𝑖

4𝜋𝑟
(−𝑖)̂…(6).  

Thus, net magnetic field at B is 𝐵⃗⃗𝐵 = 𝐵⃗⃗BA + 𝐵⃗⃗BC =
𝜇0𝑖

2𝜋𝑟
(−𝑖)̂ +

𝜇0𝑖

2𝜋𝑟
(𝑖̂) ⇒ 𝐵⃗⃗𝐵 =

𝜇0𝑖

2𝜋𝑟
(𝑖̂ − 𝑖̂) = 0…(7). 

While, net magnetic field at A is 𝐵⃗⃗A = 𝐵⃗⃗AB + 𝐵⃗⃗AC =
𝜇0𝑖

4𝜋𝑟
(𝑖̂) +

𝜇0𝑖

2𝜋𝑟
(𝑖̂) ⇒ 𝐵⃗⃗A =

3𝜇0𝑖

4𝜋𝑟
(𝑖̂) …(8). And, net 

magnetic field at C is 𝐵⃗⃗C = 𝐵⃗⃗CB + 𝐵⃗⃗CA =
𝜇0𝑖

2𝜋𝑟
(−𝑖̂) +

𝜇0𝑖

4𝜋𝑟
(−𝑖)̂ ⇒ 𝐵⃗⃗C =

3𝜇0𝑖

4𝜋𝑟
(𝑖)̂ …(9). 

Force per unit length, experienced by each of the conductor as per Lorentz’s Force Law is 𝐹⃗ = 𝑖 × 𝐵⃗⃗ …(10). 

Here, 𝑖  is the current in the conductor experiencing the force when placed in magnetic field 𝐵⃗⃗. 

Using (10) and magnetic field at  𝐵B at B , 𝐵A at A, and  𝐵C at C as per (7), (8) and (9) respectively, while 

current in each of the conductor is given to be 𝑖𝑘̂ – 

Force 𝐹B experienced by conductor at B is Zero, since one of the multiplicand   𝐵B = 0., is one of the answer.. 

While, the force 𝐹A experienced by conductor at A is   𝐹⃗𝐴 = (𝑖𝑘̂) × (
3𝜇0𝑖

4𝜋𝑟
(𝑖̂)) ⇒ s   𝐹⃗𝐴 =

3𝜇0𝑖2

4𝜋𝑟
(𝑘̂ × 𝑖̂). It 

leads   𝐹⃗𝐴 =
3𝜇0𝑖2

4𝜋𝑟
𝑗 ̂…(11), i.e. attractive towards other two conductors.   

Likewise, force 𝐹C experienced by conductor at C is   𝐹⃗C = (𝑖𝑘̂) × (
3𝜇0𝑖

4𝜋𝑟
(−𝑖)̂) ⇒ s   𝐹⃗𝐴 = −

3𝜇0𝑖2

4𝜋𝑟
(𝑘̂ × 𝑖)̂. It 

leads   𝐹⃗𝐴 =
3𝜇0𝑖2

4𝜋𝑟
(−𝑗̂) …(12), i.e. attractive towards other two conductors.   

Accordingly, using (11) and (12) magnitude of attractive force per unit length experienced by conductors A 

and C, with the available data 𝐹A = 𝐹C = 𝐹 =
3×(4𝜋×10−7)×102

4𝜋×0.05
⇒ 𝐹 =

3

5
× 10−3 ⇒ 𝐹 = 6.0 × 10−4N is the 

answer. 

Thus, Force experienced by middle conductor is Zero, while forces experienced by extreme conductors 

are 𝟔. 𝟎 × 𝟏𝟎−𝟒N  and attractive is the answer. 

I-04 Combining Biot-Savart’s Law and Lorentz’s Force law force experienced by 

conductor carrying current 𝑖p when placed in magnetic field produced by another 

parallel conductor carrying current 𝑖𝑞 is 𝐹⃗𝑃 = 𝑖𝑝 × 𝐵⃗⃗𝑞…(1). 

It is required to find position of a third conductor w.r.t. two parallel conductors A 

and B carrying currents 𝑖1 = 10 A and 𝑖3 = 40 A, respectively,  along 𝑗̂. The two 

conductors are separated by 𝑑 = 𝑟𝑎 + 𝑟𝑏 = 0.10 m…(2) 

In respect of position of third conductor experiencing Zero Force, it is essential that 

direction of magnetic field produced two conductors A and C, carrying unequal 

currents, but in same direction (𝑘̂), as shown in the figure. This is possible when 

position vectors 𝑟𝑎 and 𝑟𝑏 are in opposite direc them as shown in the figure. Thus, 𝐵𝐵 = 0…(3) is possible 



only when conductor  B is placed parallel to conductors A and C and in-between the two, as shown in the 

figure. Thus, 𝑟𝑎 = 𝑟𝑎𝑗 ̂and 𝑟𝑏 = 𝑟𝑏(−𝑗̂). 

Magnetic field at B due to current in A, as per Biot-Savart’s Law is 𝐵⃗⃗BA =
𝜇0𝑖1

2𝜋𝑟𝑎
(−𝑖)̂…(4). Likewise, magnetic 

field at B due current in C is  𝐵⃗⃗BC =
𝜇0𝑖3

2𝜋𝑟𝑏
(𝑖)̂…(5). 

Combining (3) and (4), net magnetic field at B is 𝐵⃗⃗B = 𝐵⃗⃗BA + 𝐵⃗⃗BC ⇒ 𝐵⃗⃗B =
𝜇0𝑖1

2𝜋𝑟𝑎
(−𝑖)̂ +

𝜇0𝑖3

2𝜋𝑟𝑏
(𝑖)̂…(6). 

Combining (3) and (6), 
𝜇0𝑖1

2𝜋𝑟𝑎
(−𝑖)̂ +

𝜇0𝑖3

2𝜋𝑟𝑏
(𝑖̂) = 0 ⇒

𝜇0𝑖1

2𝜋𝑟𝑎
=

𝜇0𝑖3

2𝜋𝑟𝑏
⇒

𝑖1

𝑟𝑎
=

𝑖3

𝑟𝑏
⇒

𝑖1

𝑖3
=

𝑟𝑎

𝑟𝑏
. Applying invertendo-

componendo, 
𝑖1

𝑖3+𝑖1
=

𝑟𝑎

𝑟2+𝑟𝑏
⇒ 𝑟𝑎 = (𝑟2 + 𝑟𝑏) (

𝑖1

𝑖3+𝑖1
). Using the available data, 𝑟𝑎 = 0.1 × (

10

40+10
) = 0.02 m 

or 2 cm from conductor A carrying current 10 A, is the answer. 

I-05 In the given system wires ACE and BDF have negligible resistances. 

Therefore, voltage drop across them are zero Thus nodes A,C and E are 

at same potential. Likewise, potentials of points B,D and F are at same 

potentials.  

Further it is given that wires AB, CD and DE are long wires having 

identical resistances and thus form parallel circuit of long wires of equal 

resistances. Current through these wires is equal and it is 𝑖. Moreover 

separation between adjacent wires as shown in the figure is 𝑟 = 1.0 ×
10−2 m. As per Kirchhoff’s law at node C current measured by ammeter 

30 A = 3𝑖 ⇒ 𝑖 = 10 A.  Magnetic field produced at apoint at a distance 𝑑 by a long current carrying  wires as 

per Biot-Savart’s Law is 𝐵⃗⃗ =
𝜇0𝑖

2𝜋𝑑
𝑛̂ …(1). Here, 𝑛̂  is unit direction vector along 𝑙 × 𝑑̂ where 𝑙 is the direction 

vector along which current is flowing and 𝑑̂ is the direction vector of the point,w.r.t. current, where magnetic 

field is being considered. Further, as per Lorentz’s Force Law 𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗)…(2). In this case there is 

no static electric field i.e.  𝐸⃗⃗ = 0 therefore,(2) takes a form 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(3). Here 𝑞 = 𝜆𝑙 where is charge 

on conductor at any instant which is flowing in the conductor with a unform velocity 𝑣⃗, 𝜆 is linear charge 

density on the wire of length 𝑙. Thus, (3) get further moderated to  𝐹⃗ = (𝜆𝑙)(𝑣𝑗̂) × 𝐵⃗⃗ ⇒ 𝐹⃗ = (𝜆𝑣)(𝑙𝑗̂) × 𝐵⃗⃗ ⇒

𝐹⃗ = 𝑖𝑙𝑗̂ × 𝐵⃗⃗…(4) Here, 𝑗̂ is unit vector along the length of the wire. 

Thus, combining (1) and (4), force experienced by AB will have additive effect of currents in CD and EF in 

the same direction except that separation in case of CD is 𝑟 while for EF is 2𝑟. Thus net force on AB will be 

𝐹⃗𝐴𝐵 = (
𝜇0𝑖×𝑖

2×𝑟
+

𝜇0𝑖×𝑖

2×2𝑟
) (−𝑘̂) ⇒  𝐹⃗𝐴𝐵 =

3𝜇0𝑖2

4𝑟
(−𝑘̂).  Using the data, 𝐹⃗𝐴𝐵 =

3𝜇0𝑖2

4𝑟
(−𝑘̂) =

3(4𝜋×10−7)×102

4×(1.0×10−2)
. This 

leads to a 𝐹⃗𝐴𝐵 = 3 × 10−3
(−𝑘̂) N/m or a downward force  𝟑 × 𝟏𝟎−𝟑 N/m is answer of one part. 

Likewise, force experienced by wire CD magnetic field produced by wire AB and EF equal in magnitude but 

in opposite direction to displacement vectors along (𝑖̂) and (−𝑖)̂ which cancel each other. Thus, in absence of 

current carrying wire CD placed in Zero magnetic field force experienced by it will be zero, is answer of 

second part. 

Thus, answers are 𝟑 × 𝟏𝟎−𝟑 N/m downward force on wire AB and Zero force on wire CD. 



I-06 Given system of long wires is shown in the figure. The conductor CD carrying 

a current 𝑖2 = 50.0 A is fixed. Another conductor AB  having linear mass 

density 𝜆 = 1.0 × 10−4 kg-m-1 is held directly above CD at a separation 𝑟 =
5.00 × 10−3 m. 

It is required to find current in AB which by virtue of electromagnetic force 

balances its weight. We know that force 

between two wires carrying current in same direction experience 

attractive electro-magnetic force. But, when currents are in opposite 

directions the force is repulsive. In the instant system weight of wire AB 

is 𝐹⃗𝑔 = 𝜆𝑔⃗ ⇒ 𝐹⃗𝑔 = 𝜆𝑔(−𝑘̂)…(1), 

here acceleration due to gravity is taken to be 𝑔 = 10 m/s-2. 

We know that force of repulsion between two wires carrying current in 

opposite directions, using Biot-Savart’s Law and Lorentz Force Law, is 

𝐹⃗ =
𝜇0𝑖1𝑖2

2𝜋𝑟
(𝑘̂) N/m…(2). 

Thus, combining (1) and (2) for equilibrium of forces on wire AB we have 𝐹⃗ + 𝐹⃗𝑔 = 0. It resolves into 

𝜇0𝑖1𝑖2

2𝜋𝑟
(𝑘̂) + 𝜆𝑔(−𝑘̂) = 0 ⇒

𝜇0𝑖1𝑖2

2𝜋𝑟
= 𝜆𝑔 ⇒ 𝑖1 =

2𝜋𝑟𝜆𝑔

𝜇0𝑖2
. Using the data 𝑖1 =

2𝜋×(5.0×10−3)×(1.0×10−4)×10

(4𝜋×10−7)×50.0
 . It 

solves into 𝑖1 = 𝟎.𝟓𝟎 Amp in opposite direction  is the answer.  

N.B.: The problem does not state value of 𝑔 and it has been taken as 10 m/s2. Accordingly, numerical value 

of the answer would depend upon value of 𝑔along with the principle of Significant Digits. 

I-07 Magnetic field produced at apoint at a distance 𝑑 by a long current carrying  wires as per Biot-Savart’s Law 

is 𝐵⃗⃗ =
𝜇0𝑖

2𝜋𝑑
𝑛̂ …(1). Here, 𝑛̂  is unit direction vector along 𝑙 × 𝑑̂ where 𝑙 is the direction vector along which 

current is flowing and 𝑑̂ is the direction vector of the point,w.r.t. current, where magnetic field is being 

considered. Further, as per Lorentz’s Force Law 𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗)…(2). In this case there is no static electric 

field i.e.  𝐸⃗⃗ = 0 therefore,(2) takes a form 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(3). Here 𝑞 =
𝜆𝑙 where is charge on conductor at any instant which is flowing in the 

conductor with a unform velocity 𝑣⃗, 𝜆 is linear charge density on the wire 

of length ∆𝑙. Thus, (3) get further moderated to  𝐹⃗ = (𝜆𝑙)(𝑣𝑗̂) × 𝐵⃗⃗ ⇒

𝐹⃗ = (𝜆𝑣)(𝑙𝑗̂) × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑖𝑙𝑗̂ × 𝐵⃗⃗…(4) Here, 𝑗̂ is unit vector along the 

length of the wire. 

The square wire loop consisists of broadly two parts – 

Part (a): Sides PQ and RQ of length 𝑎 = 0.02 m carrying current along length (𝑖̂) and (– 𝑖̂). These currents 

are perpendicular to the magnetic field 𝐵 =
𝜇0𝑖2

2𝜋𝑟
𝑘̂ …(5) produced by wire AB carrying current 𝑖2(𝑗̂), 

here 𝑟 is the distance of the portion of length ∆𝑟𝑖̂ of wiree PQ. This is in accordance with (1). This 

field when interacts with current 𝑖1in portion ∆𝑟𝑖 ̂ produces a force as per (4), with appropriate 

variables and direction vectors in (5), is ∆𝐹⃗ = 𝑖1∆𝑟𝑖̂ × 𝐵⃗⃗. It further solves into ∆𝐹⃗ = 𝑖1∆𝑟𝑖̂ ×

(
𝜇0𝑖2

2𝜋𝑟
𝑘̂) ⇒ ∆𝐹⃗ =

𝜇0𝑖1𝑖2

2𝜋𝑟
∆𝑟(−𝑗̂)…(6). Thus net force on side PQ is 𝐹⃗PQ = (∫

𝜇0𝑖1𝑖2

2𝜋𝑟
𝑑𝑟

𝑑

𝑎+𝑑
) (−𝑗̂) ⇒

𝐹⃗PQ = [
𝜇0𝑖1𝑖2

2𝜋𝑟2 ]
𝑎+𝑑

𝑑
(−𝑗̂) ⇒ 𝐹⃗PQ = [

𝜇0𝑖1𝑖2

2𝜋𝑑2 −
𝜇0𝑖1𝑖2

2𝜋(𝑎+𝑑)2
] (−𝑗̂). It solves to 𝐹⃗PQ =

𝜇0𝑖1𝑖2

2𝜋
[

1

𝑑2 −

1

(𝑎+𝑑)2
] (−𝑗̂) ⇒ 𝐹⃗PQ =

𝜇0𝑖1𝑖2

2𝜋
[
(𝑎+𝑑)2−𝑑2

𝑑2(𝑎+𝑑)2
] (−𝑗̂) ⇒ 𝐹⃗PQ =

𝜇0𝑖1𝑖2

2𝜋
[

(𝑎+2𝑑)𝑎

𝑑2(𝑎+𝑑)2
] (−𝑗̂)…(7). Where as force 

on side RS is 𝐹⃗RS = (∫
𝜇0𝑖1𝑖2

2𝜋𝑟
𝑑𝑟

𝑎+𝑑

𝑑
) (−𝑗̂) ⇒ 𝐹⃗RS = [

𝜇0𝑖1𝑖2

2𝜋𝑟2 ]
𝑑

𝑎+𝑑
(−𝑗̂) ⇒ 𝐹⃗RS = [

𝜇0𝑖1𝑖2

2𝜋(𝑎+𝑑)2
−

𝜇0𝑖1𝑖2

2𝜋𝑑2 ] (−𝑗̂) ⇒ 𝐹⃗RS =
𝜇0𝑖1𝑖2

2𝜋
[
𝑑2−(𝑎+𝑑)2

𝑎2(𝑎+𝑑)2
] (−𝑗̂). It solves into 𝐹⃗RS = (−)

𝜇0𝑖1𝑖2

2𝜋
[

(𝑎+2𝑑)𝑎

𝑎2(𝑎+𝑑)2
] (−𝑗̂) ⇒

𝐹⃗RS =
𝜇0𝑖1𝑖2

2𝜋
[

(𝑎+2𝑑)𝑎

𝑎2(𝑎+𝑑)2
] (𝑗̂)…(8). From (7) and (8) it is proved the forces on sides PQ and RQ are 

equal in magnitude and opposite in direction,   



Part (b): We know that force of on repulsion between two parallel wires carrying current in, using Biot-

Savart’s Law and Lorentz Force Law, as per (6) would be 𝐹⃗ = 𝑖1𝑙 × (
𝜇0𝑖2

2𝜋𝑟
𝑘̂) ⇒ 𝐹⃗ =

𝜇0𝑖1𝑖2

2𝜋𝑟
(𝑙 × 𝑘̂)…(9). Here, 𝑙 is the vector length of wire along current 𝑖1. Thus, for wire QR, 𝑙QR =

𝑎𝑗̂ and for wire SP, 𝑙SP = 𝑎(−𝑗̂).Further, the wire QR is at a distance 𝑟QR = 𝑑 and 𝑟SP = 𝑎 + 𝑑. 

Accordingly, using (9) force on wire QR is 𝐹⃗QR =
𝜇0𝑖1𝑖2

2𝜋𝑟QR
(𝑙QR × 𝑘̂) ⇒ 𝐹⃗QR =

𝜇0𝑖1𝑖2

2𝜋𝑑
(𝑎(𝑗̂) × 𝑘̂) ⇒

𝐹⃗QR =
𝜇0𝑖1𝑖2𝑎

2𝜋𝑑
(𝑖̂)…(10). Likewise, force on wire SP is  𝐹⃗SP =

𝜇0𝑖1𝑖2

2𝜋𝑟QR
(𝑙SP × 𝑘̂) ⇒ 𝐹⃗SP =

𝜇0𝑖1𝑖2

2𝜋(𝑎+𝑑)
(𝑎(−𝑗̂) × 𝑘̂) ⇒ 𝐹⃗SP =

𝜇0𝑖1𝑖2𝑎

2𝜋(𝑎+𝑑)
(−𝑖)̂…(11). Repulsive nature of force on the two sides is 

evident from (1) and (11), yet magnitudes of forces on the two sides are unequal. 

Thus, net force on the loop PQRS is 𝐹⃗ = (𝐹⃗PQ + 𝐹⃗QR) + (𝐹⃗RS + 𝐹⃗SP). Using, derivation in part (a) 

and results in (10) and (11) we have  𝐹⃗ = 𝐹⃗RS + 𝐹⃗SP =
𝜇0𝑖1𝑖2𝑎

2𝜋𝑑
(𝑖)̂ +

𝜇0𝑖1𝑖2𝑎

2𝜋(𝑎+𝑑)
(−𝑖)̂ ⇒ 𝐹⃗ =

𝜇0𝑖1𝑖2𝑎

2𝜋
(

1

𝑑
−

1

𝑎+𝑑
) (𝑖̂) ⇒ 𝐹⃗ =

𝜇0𝑖1𝑖2𝑎

2𝜋
×

𝑎

𝑑(𝑎+𝑑)
(𝑖̂) ⇒ 𝐹⃗ =

𝜇0𝑖1𝑖2𝑎2

2𝜋𝑑(𝑎+𝑑)
(𝑖̂) . Using the available data, 

𝐹⃗ =
(4𝜋×10−7)×6×10×(2×10−2)

2

2𝜋×(1×10−2)×((2+1)×10−2)
(𝑖̂) ⇒  𝐹⃗ = 160 × 10−7(𝑖)̂ ⇒  𝐹⃗ = 1.6 × 10−5(𝑖)̂ N. Thus ,force on 

the loop is  1.6 × 10−3 N towards wire AB. 

Thus, answers are (a) Proved,   (b) 𝟏. 𝟔 × 𝟏𝟎−𝟓 N towards wire AB 

I-08 As per Biot-Savart’s Law magnetic field at a point situated at a distance 𝑟 from a wire of length ∆𝑙 = ∆𝑙𝑙 

carrying current 𝑖 along 𝑙  as shown in the figure is ∆𝐵⃗⃗ =
𝜇0𝑖

4𝜋𝑟2 ∆𝑙 × 𝑟̂ ⇒ ∆𝐵⃗⃗ =
𝜇0𝑖

4𝜋𝑟2 ∆𝑙𝑙  × 𝑟̂ ⇒ ∆𝐵⃗⃗ =
𝜇0𝑖∆𝑙

4𝜋𝑟2 (−𝑘̂)…(1). The elemental length ∆𝑙 is part of a circle of 

radius 𝑟 subtends an angle ∆𝜃  at the circle of the circle such that ∆𝑙 = 𝑟 × ∆𝜃…(2). 

Combining (1) and (2), ∆𝐵⃗⃗ =
𝜇0𝑖𝑟∆𝜃

4𝜋𝑟2 (−𝑘̂). Thus, magnitude of the electric field is ∆𝐵 =
𝜇0𝑖∆𝜃

4𝜋𝑟
…(3).  

Thus magnetic field at the center of the circular loop is 𝐵 = ∫
𝜇0𝑖

4𝜋𝑟
𝑑𝜃

2𝜋

0
⇒ 𝐵 =

𝜇0𝑖

4𝜋𝑟
[𝜃]0

2𝜋 ⇒ 𝐵 =
𝜇0𝑖

4𝜋𝑟
× 2𝜋. It 

leads to  𝐵 =
𝜇0𝑖

2𝑟
…(4). 

Using the available data in (4) 2.000 × 10−3 =
(4𝜋×10−7)×5.00

2𝑟
⇒ 𝑟 =

(4𝜋×10−7)×5.00

2×(2.000×10−3)
⇒ 𝑟 = 5.00 × 𝜋 ×

10−4 ⇒ 𝑟 = 1.57 × 10−2 m or 1.57 cm is the answer. 

I-09 Magnetic field 𝐵 = 6.0 × 10−5 T due to a current 𝑖 in a circular loop of radius 𝑟 = 5.0 × 10−2 m at its center 

is 𝐵 =
𝜇0𝑖

2𝑟
. If it is a coil comprising of 𝑛 = 100 turns then 𝐵𝑛 =

𝜇0𝑖𝑛

2𝑟
⇒ 𝑖 =

2𝑟𝐵𝑛

𝜇0𝑛
. With the given data current 

in the loop is 𝑖 =
2×(5.0×10−2)×(6.0×10−5)

(4𝜋×10−7)×100
⇒ 𝑖 =

15×10−2

𝜋
   . It solves into 𝑖 = 4.8 × 10−2 or 48 mA is the 

answer. 

I-10 Charge of an electron 𝑞𝑒 = −1.6 × 10−19C is revolving in circle of radius 𝑟 =
0.5 angstrom or 𝑟 = 0.5 × 10−10 m making 𝑛 = 3 × 105 revolutions/sec. Then 

instantaneous velocity of the revolving electron 𝑣 = 𝑟𝜔 = 𝑟 × (2𝜋𝑛) ⇒ 𝑣 =
2𝜋𝑟𝑛 m/s and the electron so revolving establishes a current similar to current in 

a circular loop 𝑖 = 𝑞𝑒𝑣 Amp.  Therefore, magnetic field at the center of the 

circular path of the revolving electron is 𝐵 =
𝜇0𝑖

2𝑟
=

(4𝜋×10−7)×𝑞𝑒𝑛

2𝑟
⇒ 𝐵 =

(4𝜋×10−7)×(1.6×10−19)×(3×105)

2×(0.5×10−10)
⇒ 𝐵 = 60 × 10−11 T or 𝟔 × 𝟏𝟎−𝟏𝟎 T is the 

answer. 



N.B.: In case of charges moving in a straight wire, current is 𝑖 = 𝑞𝑣, here 𝑞 is the charge per unit length of 

the wire and 𝑣 is the velocity of displacement of the charge. But, in the instant case it a single electron is 

performing circular motion making 𝑛 revolutions per second. It is, therefore, equivalent to 𝑞𝑒𝑛 coulomb 

charge passing through every point in every second, and hence current established in the circular loop is 𝒊 =
𝒒𝒆 × 𝒏,  and not that applicable in case of a straight wire as shown earlier. 

I-11 Applying Kirchhoff’s Current Law at nodes incoming current 𝑖 will split along two identical semicircular arcs 

of the circle or radius 𝑟 each carrying current 
𝑖

2
 ., as shown in the 

figure. As per Ampere’s Right Hand Thumb Rule (mathematically 

explained by Biot-Savart’s Law) magnetic field produced by upper 

half of the circle at its center O 𝐵⃗⃗𝑈 would be along (−𝑘̂). Likewise, 

magnetic field produced by the lower half at the center would be along 

(𝑘̂). Since, the magnetic field is produced beach of the 

complementary half of the circle carrying equal currents  
𝑖

2
 and hence 

magnitude as per Biot-Savart’s Law would be equal and half of that 

produced by current in a circular loop 𝐵𝑈 = 𝐵𝐿 =
𝐵

2
…(1) 

Magnetic field produced by a circular current carrying loop, using Biot-Savart’s Law is  𝐵 =
𝜇0𝑖

2𝑟
…(2). Thus 

combining (1), (2) and direction vectors of the fields discussed above is 𝐵⃗⃗𝑈 =
𝜇0𝑖

4𝑟
(−𝑘̂) and 𝐵⃗⃗𝐿 =

𝜇0𝑖

4𝑟
(𝑘̂). 

Thus net magnetic field at the center would be 𝐵⃗⃗𝑂 = 𝐵⃗⃗𝑈 + 𝐵⃗⃗𝐿 ⇒ 𝐵⃗⃗𝑂 =
𝜇0𝑖

4𝑟
(−𝑘̂) +

𝜇0𝑖

4𝑟
(𝑘̂) = 0. Thus, Zero 

is the answer. 

N.B.: This problem unless asked as a part question or a full question would need to be elaborated accordingly. 

Else, it is worth an Objective question. 

I-12 Magnetic field at the center of a coil in 𝑖̂ − 𝑗̂ plane current carrying 

in clockwise direction is along (−𝑘̂) and magnitude of the magnetic 

field is 𝐵 =
𝜇0𝑛𝑖

2𝑟
…(1). Given are two concentric loops of radius 

𝑟1 = 0.05 m and 𝑟2 = 0.10 m having turns 𝑛1 = 50  and 𝑟2 = 100 

m , respectively. Each of the coil is carrying current 𝑖 = 2.0 A in 

clockwise directions. Accordingly net magnetic field at the 

common center of the two coils is 𝐵⃗⃗ = 𝐵⃗⃗1 + 𝐵⃗⃗2. Here, as per figure 

𝐵⃗⃗1 =
𝜇0𝑛1𝑖

2𝑟1
 (−𝑘̂) and 𝐵⃗⃗2 =

𝜇0𝑛2𝑖

2𝑟2
 (−𝑘̂). Using the available data 𝐵⃗⃗ = (

𝜇0𝑛1𝑖

2𝑟1
+

𝜇0𝑛2𝑖

2𝑟2
) (−𝑘̂) ⇒ 𝐵⃗⃗ =

(
𝜇0𝑖

2
) (

𝑛1

𝑟1
+

𝑛2

𝑟2
) (−𝑘̂) ⇒ 𝐵⃗⃗ = (

(4𝜋×10−7)×2.0

2
) (

50

0.05
+

100

0.10
) (−𝑘̂) ⇒ 𝐵⃗⃗ = 8𝜋 × 10−4 (−𝑘̂) T. Thus 

magnitude of the magnetic field is 𝟖𝝅 × 𝟏𝟎−𝟒T is answer of part (a). 

In part (b) direction of current in two coils is in opposite directions, as shown in the figure. Accordingly, 𝐵⃗⃗ =

(
𝜇0𝑛1𝑖 

2𝑟1
 (−𝑘̂) +

𝜇0𝑛2𝑖

2𝑟2
 (𝑘̂))  ⇒ 𝐵⃗⃗ = (

𝜇0𝑖

2
) (

𝑛2

𝑟2
−

𝑛1

𝑟1
) (𝑘̂). Using the available data 𝐵⃗⃗ = (

𝜇0𝑖

2
) (1000 −

1000) (𝑘̂) ⇒ 𝐵⃗⃗ = 0 (
𝜇0𝑖

2
) (

100

0.10
−

50

0.05
) (𝑘̂), i.e, Zero is answer of the part (b) 

Thus. answers are (a) 𝟖𝝅 × 𝟏𝟎−𝟒 T   (b) Zero. 

I-13 The two coils having radius 𝑟1 = 0.05m and  𝑟2 = 0.10m have turns 𝑛1 = 50 𝑛2 =
100 recpectively. The axis of the  inner coil having 50 turns  along  𝑗̂  unit vector, 

while the coil having 100 turns is so rotated that its axis is along 𝑘̂ unit vector. Cock-

wise current 𝑖 = 2.0A in outer coil produces magnetic field  𝐵⃗⃗2 =
𝜇0𝑛2𝑖

2𝑟2
 (−𝑘̂)…(1), 

while clockwise current 𝑖 = 2.0 A in inner coil produces magnetic field 𝐵⃗⃗1 =
𝜇0𝑛1𝑖

2𝑟1
 (−𝑗̂)...(2).  



Using the available data  magnitudes are 𝐵1 =
(4𝜋×10−7)×50×2.0

2×0.05
= (4𝜋 × 10−7) × 1000 ⇒ 𝐵1 = 4𝜋 ×

10−4T. On the similar lines the magnitude  𝐵2 =
(4𝜋×10−7)×100×2.0

2×0.10
= (4𝜋 × 10−7) × 1000 ⇒  𝐵2 = 4𝜋 ×

10−4T. It is seen that direction vectors of both the magnetic fields  . of equal magnitudes 𝐵1 = 𝐵2 = 4𝜋 ×

10−4T are in perpendicular directions and hence net magnetic field is 𝐵 = (4𝜋 × 10−4) × √2 ⇒ 17.8 × 10−4 

T or 1.8 T is the answer 

I-14 The problem involves application of Biot-Savart’s Law for magnetic field produced 

by a circular loop in 𝑖̂ − 𝑗̂ plane of radius 𝑟 = 0.20 m and carrying current 𝑖 = 10 A, 

as shown in the figure. Accordingly, magnetic field at the center of the loop is 𝐵⃗⃗ =
𝜇0𝑖

2𝑟
𝑘̂.  

Next it is given that an electron having charge 𝑞 = −1.6 × 10−19 C with moving a 

velocity 𝑣⃗ = 2.0 × 106𝑣̂ passes through center of the loop inclined at an angle 𝜃 =
300 with the axis of the loop as shown in the figure. Therefore magnetic force on the 

electron as per Lorentz’s Force law𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹 = 𝑞𝑣𝐵 sin 𝜃 . Using the 

available data  𝐹 = (1.6 × 10−19) × (2.0 × 106) ×
(4𝜋×10−7)×10

2×0.20
×

1

2
⇒ 𝐵 = 𝟏𝟔𝝅 × 𝟏𝟎−𝟏𝟗N is the answer. 

I-15 A circular loop of radius 𝑅 carrying a current 𝐼 is placed in 𝑖̂ − 𝑗̂ plane as shown in the 

figure. Axis of the loop is along 𝑘̂. Applying Biot-Savart’s law it will produce magnetic 

field 𝐵⃗⃗ =
𝜇0

2𝑅
𝑘̂ …(1), at the center of the loop. Further it is given that another circular loop 

of radius 𝑟 carrying current 𝑖 in anti-clockwise 

direction as seen against 𝑖.̂ The small loop, as shown 

in the figure, is in 𝑗̂ − 𝑘̂ plane.  

Statement of the problem shown in the figure on the 

right side, it is observed that – 

a) magnetic field at the center of the outer loop of radius 𝑅 is 𝐵⃗⃗.   
b) plane of the smaller loop of radius 𝑟 is along the magnetic field. 

c) given that 𝑟 ≪ 𝑅, and geometrical symmetry of the loop, force 

experienced by inner coil as per will produce a torque about 

diameter of smaller coil.  We take for convenience diameter of 

loop along Y-Y’ i.e. 𝑗̂. 

Taking forward analysis force on a small element of loop of length 

∆𝑙 = 𝑟∆𝜃𝑙…(2), carrying current 𝑖, is as per Lorentz’s Force Law 

is ∆𝐹⃗ = 𝑖𝑙 × 𝐵⃗⃗ ⇒ ∆𝐹⃗ = 𝑖(𝑟∆𝜃𝑙 ) × 𝐵⃗⃗. The force as a result of 

cross-product is ∆𝐹⃗ = 𝑖𝑟𝐵 sin𝜃 ∆𝜃(−𝑖)̂….(3).  

Therefore, torque experienced by the element of loop about 

diameter Y-Y’ would be ∆𝛤⃗ = 𝑄𝑃⃗⃗⃗⃗ ⃗⃗ × ∆𝐹⃗ ⇒ ∆𝛤⃗ = (𝑟 sin𝜃 𝑘̂) ×

(𝑖𝑟𝐵 sin𝜃 ∆𝜃(−𝑖)̂)….(4). This expression simplifies magnitude of the torque on small element of loop to 

∆𝛤 = 𝑖𝐵𝑟2 sin2 𝜃 ∆𝜃 ⇒ ∆𝛤 =
𝑖𝐵𝑟2

2
(1 − cos2𝜃)∆𝜃.  Hence net torque on the inner loop would be 𝛤 =

∫
𝑖𝐵𝑟2

2
(1 − cos 2𝜃)𝑑𝜃

2𝜋

0
⇒ 𝛤 =

𝑖𝐵𝑟2

2
[∫ 𝑑𝜃

2𝜋

0
− ∫ cos2𝜃  𝑑𝜃

2𝜋

0
] ⇒ 𝛤 =

𝑖𝐵𝑟2

2
× 2𝜋 ⇒ 𝛤 = 𝑖𝐵𝜋𝑟2…(5). 

Combining (1) and (5),   𝛤 = 𝑖 (
𝜇0𝐼

2𝑅
) 𝜋𝑟2 ⇒ 𝛤 =

𝝁𝟎𝝅𝒊𝑰𝒓𝟐

𝟐𝑹
 is the answer. 

N.B.: This is good example involving multiple vector operations, with the clarity of concepts. It is brought 

out in details, with basics, in Appendix-I. 



I-16  Given system of loop is shown in the figure. The outer loop of radius 𝑅 is carrying 𝐼 and 

produces magnetic field 𝐵 in accordance with the Biot and Savart’s Law and in instant case 

when coil is along 𝑖̂ − 𝑗̂ and current in the 

loop in anticlockwise direction 𝐵⃗⃗ =
𝜇0𝐼

2𝑅
𝑘̂…(1). Torque experienced by a loop 

of radius 𝑟 carrying current 𝑖 which in 

inclined to the plane of the out loop at an 

angle 𝛼 = 300 as shown in the figure is 𝛤⃗ =
 𝜇0𝜋𝑖𝐼𝑟2

2𝑅
sin 𝛼 𝑖̂ ⇒ 𝛤⃗ =

 𝜇0𝜋𝑖𝐼𝑟2

4𝑅
𝑖̂…(2). The axis of rotation is 

X-X’. 

This inner loop has to be held to held at an inclination 𝛼 by application 

of an external single minimum force. Since, external torque  𝛤⃗𝑒 = 𝑟 ×

𝐹⃗ ⇒ 𝛤⃗ = 𝑟𝐹𝑠𝑖𝑛∅(− 𝑖)̂…(3). It implies that the direction of external 

torque is opposite to the torque due to internal forces in (2).  

For external force 𝐹, applied on  periphery of the loop, to be minimum 

as required, 𝑟 has to be maximum which is 𝑟 → 𝑟 radius of the inner 

loop and so also sin∅ = 1, i.e. ∅ =
𝜋

2
, as shown in the figure.  It leads 

to   𝛤⃗𝑒 = 𝛤⃗ = 𝑟𝐹. 

Thus in state of equilibrium, 𝛤⃗ + 𝛤⃗𝑒 = 0 ⇒
 𝜇0𝜋𝑖𝐼𝑟2

4𝑅
𝑖̂ + 𝑟𝐹(− 𝑖)̂ = 0 ⇒ 𝑟𝐹 =

 𝜇0𝜋𝑖𝐼𝑟2

4𝑅
⇒ 𝐹 =

 𝝁𝟎𝝅𝒊𝑰

𝟒𝑹
 is the 

answer. 

N.B.: This is good example involving multiple vector operations, with the clarity of concepts both in 

electromagnetism and mechanics. Concepts of electromagnetics are brought out in details, with basics, in 

Appendix-I. 

I-17 Given system is shown in figure where a semicircular wire of radius 

𝑟 = 0.10 m is carrying current 𝐼 = 5.0 A. It is required to determine 

magnetic field 𝐵 at the center of curvature O. 

As per Biot-Savart’s ∆𝐵⃗⃗ =
𝜇0𝐼

4𝜋𝑟2 ∆𝑙 × 𝑟̂ ⇒ ∆𝐵⃗⃗ =
𝜇0𝐼

4𝜋𝑅2 ∆𝑙𝑙  × 𝑟̂. Here, 

∆𝑙 = 𝑟∆𝜃. Accordingly, ∆𝐵⃗⃗ =
𝜇0𝐼𝑟∆𝜃

4𝜋𝑟2 𝑘̂ ⇒ ∆𝐵⃗⃗ =
𝜇0𝐼∆𝜃

4𝜋𝑟
𝑘̂…(1). It is to 

be noted that in deriving this expression we encounter ∆𝑙 × 𝑟̂ and wires 

involving current entering the semicircular wire at A and leaving at B both the constituent vectors are collinear 

and hence ∆𝑙 × 𝑟̂ = ∆𝑙𝑟 sin𝜃  𝑛̂ = 0 for angle between collinear vectors 𝜃 = 0 ⇒ sin0 = 0. Thus net 

magnetic field at the center O is obtained by integration on of (1) 𝐵 = ∫
𝜇0𝐼𝑑𝜃

4𝜋𝑟

𝜋

0
⇒ 𝐵 =

𝜇0𝐼

4𝜋𝑟
∫ 𝑑𝜃

𝜋

0
. It solves 

into 𝐵 =
𝜇0𝐼

4𝜋𝑟
× 𝜋 ⇒ 𝐵 =

𝜇0𝐼

4𝑟
…(2). 

Using the given data in (2), 𝐵 =
(4𝜋×10−7)×5.0

4×0.10
= 5𝜋 × 10−6 ⇒ 𝐵 = 1.6 ×× 10−5 T, is the answer. 

N.B.: This problem being full length question has been solved analytically. Otherwise it can be solved like an 

objective problem using formula of magnetic field prroduced by a circular current carrying loop 𝐵 =
𝜇0𝐼

2𝑟
. In 

this problem the wire is in semicircular shape and hence maggnetic field would be 𝐵′ =
𝐵

2
=

𝜇0𝐼

4𝑟
, and using it 

directly as it is same as that in (2) 

I-18 Given system is shown in figure where a a wire shaped in arc of a circle forming angle 𝛼 = 1200 =
2𝜋

3
 rad of 

radius 𝑟 = 0.200 m is carrying current 𝐼 = 6.00 A. It is required to determine magnetic field 𝐵 at the center 

of curvature O. 



As per Biot-Savart’s ∆𝐵⃗⃗ =
𝜇0𝐼

4𝜋𝑟2 ∆𝑙 × 𝑟̂ ⇒ ∆𝐵⃗⃗ =
𝜇0𝐼

4𝜋𝑅2 ∆𝑙𝑙  × 𝑟̂. Here, 

∆𝑙 = 𝑟∆𝜃. Accordingly, ∆𝐵⃗⃗ =
𝜇0𝐼𝑟∆𝜃

4𝜋𝑟2 𝑘̂ ⇒ ∆𝐵⃗⃗ =
𝜇0𝐼∆𝜃

4𝜋𝑟
𝑘̂…(1). Since, 

nothing is stated about either length or orientation of wires feeding and 

exiting the current, and hence they are ignored and analysis is limited 

to the given arc. 

 
𝜇0𝐼

4𝜋𝑟
× 𝜋 

Thus net magnetic field at the center O is obtained by integration on of (1) 𝐵 = ∫
𝜇0𝐼𝑑𝜃

4𝜋𝑟

2𝜋

3
0

⇒ 𝐵 =
𝜇0𝐼

4𝜋𝑟
∫ 𝑑𝜃

2𝜋

3
0

. 

It solves into 𝐵 =
𝜇0𝐼

4𝜋𝑟
×

2𝜋

3
⇒ 𝐵 =

𝜇0𝐼

6𝑟
…(2). 

Using the given data in (2), 𝐵 =
2×(4𝜋×10−7)×6.00

6×0.200
= 4.00 × 𝜋 × 10−6 ⇒ 𝐵 = 𝟏. 𝟐𝟔 × 𝟏𝟎−𝟓 T, is the answer. 

N.B.: This problem being full length question has been solved analytically. Otherwise it can be solved like an 

objective problem using formula of magnetic field prroduced by a circular current carrying loop 𝐵 =
𝜇0𝐼

2𝑟
. In 

this problem the wire shaped in arc of a circle of angle 𝛼 =
2𝜋

3
 and hence magnetic field would be 𝐵′ =

2𝜋

3
𝐵 =

𝜇0𝐼

6𝑟
, and using it directly as it is same as that in (2). 

I-19 As per Biot-Savart’s Law, magnetic field at the center of loop of radius 𝑟 in 𝑖̂ − 𝑗̂ plane carrying current 𝑖 will 

produce magnetic field at O, center of the loop, 𝐵⃗⃗1 =
𝜇𝑜𝑖

2𝑟
𝑘̂.  

Whereas, a long wire in  𝑖̂ − 𝑗̂ plane carrying  current 𝐼 along 𝑗̂ would 

produce magnetic field at a distance 𝑥 from it  𝐵⃗⃗2 =
𝜇𝑜𝐼

𝑥
𝑘̂. If direction of 

current is revere i.e. along  (−𝑗̂) the magnetic field at same point would be 

𝐵⃗⃗3 =
𝜇𝑜𝐼

2𝜋𝑥
(−𝑘̂).  

In the system as shown in the figure it is desired that magnetic field at the 

center of the loop is zero which with 𝐵⃗⃗ = 𝐵⃗⃗1 + 𝐵⃗⃗2 ≠ 0 since both the 

constituent vectors are non-zero as well as unidirectional. 

In the system as shown in the figure it is desired that magnetic field at the 

center of the loop is zero which with 𝐵⃗⃗ = 𝐵⃗⃗1 + 𝐵⃗⃗2 ≠ 0 since both the constituent vectors are non-zero as well 

as unidirectional. 

Hence, for  magnetic 𝐵⃗⃗ = 0 it essential that fields at O are in opposite direction which is there when current 

in straight wire is along  (−𝑗̂). Thus, for 𝐵⃗⃗ = 0 condition is 𝐵⃗⃗ = 𝐵⃗⃗1 + 𝐵⃗⃗3 = 0 ⇒
𝜇𝑜𝑖

2𝑟
𝑘̂ +

𝜇𝑜𝑖

2𝜋𝑥
(−𝑘̂) = 0 ⇒

𝜇𝑜𝑖

2𝑟
=

𝜇𝑜𝑖

2𝜋𝑥
⇒ 𝑥 =

𝑟𝐼

𝑖𝜋
. Using the available data 𝑥 =

𝑟(4𝑖)

𝑖𝜋
⇒ 𝑥 =

4𝑟

𝜋
. In this case wire is placed in that half of the 

circle where current in minor arc is in direction opposite to the that in straight wire. 

I-20 Given is a circular coil containing 𝑛 = 200 turns of radius 𝑅 =

0.10 m in 𝑖̂ − 𝑘̂ plane carrying current 𝐼 = 2.0 A. As per Biot-

Savart’s Law, magnetic field at point P on the axis of the loop at a 

distance 𝑑 from the center of the loop O; a distance 𝑟 from a small 

element of wire of length ∆𝑙 = 𝑟∆𝜃𝑙 will be ∆𝐵⃗⃗𝑃 =
𝜇𝑜𝑛𝐼𝑅∆𝜃

4𝜋𝑟2 𝐵𝑟̂, here 

∆𝐵𝑃 =
𝜇𝑜𝑛𝐼𝑅∆𝜃

4𝜋𝑟2 …(1) 

 

This magnetic field has two components ∆𝐵⃗⃗𝑃 = ∆𝐵⃗⃗𝑗 + ∆𝐵⃗⃗𝑁 ⇒

∆𝐵⃗⃗𝑃 = ∆𝐵𝑃 cos (
𝜋

2
− 𝛼) 𝑗̂ + ∆𝐵𝑃 sin (

𝜋

2
− 𝛼) 𝑁̂. It simplifies into 

𝐵⃗⃗𝑃 = ∆𝐵𝑃 sin 𝛼 𝑗̂ + ∆𝐵𝑃 cos 𝛼 𝑁̂…(2), as shown in the figure. With 



the symmetry of the loop about its axis  O, the component of magnetic field along the loop 𝑁̂ will cancel out 

leaving the component along 𝑗̂ to be only effective. 

 

Thus, combining (1) and (2), net magnetic field at point P, due to the loop is 𝐵𝑃 = ∫
𝜇𝑜𝑛𝐼𝑅∆𝜃

4𝜋𝑟2

2𝜋

0
sin 𝛼 ⇒ 𝐵𝑃 =

𝜇𝑜𝑛𝐼𝑅 sin𝛼

4𝜋𝑟2 ∫ 𝑑𝜃
2𝜋

0
⇒ 𝐵𝑃 =

𝜇𝑜𝑛𝐼𝑅 sin𝛼

4𝜋𝑟2 × 2𝜋 ⇒ 𝐵𝑃 =
𝜇𝑜𝑛𝐼𝑅 sin𝛼

2𝑟2 …(3). It is seen from the figure that sin 𝛼 =
𝑅

𝑟
, 

therefore, 𝐵𝑃 =
𝜇𝑜𝑛𝐼𝑅2

2𝑟3 . Further, 𝑟 = √𝑑2 + 𝑅2 therefore, 𝐵𝑃 =
𝜇𝑜𝑛𝐼𝑅2

2(𝑑2+𝑅2)
3
2

 …(4). 

 

With this generic analysis, the problem in two parts is being solved as under – 

Part (a): At the center of the coil point P → O, 𝑟 → 𝑅 and 𝛼 →
𝜋

2
 and, therefore, using (3) 𝐵𝑂 =

𝜇𝑜𝑛𝐼𝑅 sin
𝜋

2

2𝑅2 . It 

solves into 𝐵𝑂 =
𝜇𝑜𝑛𝐼

2𝑅
, Using the available data, 𝐵𝑂 =

(4𝜋×10−7)×200×2.0

2×0.10
= 0.8𝜋 × 10−3 ⇒ 𝐵𝑂 =

𝟐.𝟓𝟏 mT, is the answer. 
 

Part (b): It is required to find distance 𝑑 of point P at which magnetic field intensity drops to half of the value 

at center of the coil O, determined in part (a) i.e. 𝐵𝑃 =
𝐵𝑂

2
. Thus, using (4) with the given data,  

𝜇𝑜𝑛𝐼𝑅2

2(𝑑2+𝑅2)
3
2

=
1

2
×

𝜇𝑜𝑛𝐼

2𝑅
⇒ 2𝑅3 = (𝑑2 + 𝑅2)

3

2 ⇒ 4 = (
𝑑2+𝑅2

𝑅2 )
3

⇒ (
𝑑

𝑅
)
2
+ 1 = √4

3
⇒ (

𝑑

𝑅
)
2
+ 1 =

1.59 ⇒ (
𝑑

𝑅
)
2

= 0.59. It leads to 
𝑑

𝑅
= √0.59 ⇒ 𝑑 = 0.77 × 𝑅 ⇒ 𝑑 = 0.77 × 0.10 = 0.077m or 7.7 

cm is the answer. 

Thus, answers are (a) 𝟐. 𝟓𝟏 mT and 7.7 cm. 

 

N.B.: This analysis is brought out in Annexure II 

I-21 Figure shows a gray block at the center of the loop is just to conceptualize 

clockwise direction of current in the loop. Magnetic field due to a coil at a 

distance 𝑑, along the axis of a circular loop, from its center is 𝐵 =
𝜇𝑜𝐼𝑅2

2(𝑑2+𝑅2)
3
2

…(1), as brought out in Appendix-II. As per Ampere’s Right-Hand-

Thumb-Rule, upper face of the coil will act as South Pole and accordingly. 

direction of magnetic field shall be downward at point P. Likewise, lower 

face of the coil will act as north pole maintaining downward field at Q, and 

also satisfying continuity of magnetic field. 

Both points P and Q are placed symmetrically on the opposite sides of the loop and hence magnitude of the 

magnetic field as per (1) with the given data would be 𝐵 =
(4𝜋×10−7)×5.0×(4×10−2)

2

2((3×10−2)2+(4×10−2)2)
3
2

=
(2𝜋×10−6)×(4×10−2)

2

2×(5×10−2)3
⇒

𝐵 =
(𝜋×10−6)×16×10−4

125×10−6  ⇒ 𝐵 = 4.02 × 10−5T. 

Thus,  answer is 𝑩 = 𝟒. 𝟎𝟐 × 𝟏𝟎−𝟓T at both the points P and Q downward at point P. 

I-22 Given system is shown in figure where ring of radius 𝑅 = 0.20 m carrying a 

charge 𝑞 = 3.14 × 10−6C rotates with an angular velocity 𝜔 = 60.0 rad/s. It 

is required to find ratio 
𝐸𝑥

𝐵
 at a point along axis of the loop displaced from the 

center O by 𝑑 = 0.05 m. 

 

Determination of 𝑬𝒙: Consider a small length of ring ∆𝑙  at two diametrically 

opposite points G and H as shown in the figure. Charge on the small lengths 

at the two points carry charge ∆𝑞 =
𝑄

2𝜋𝑅
∆𝑙…(1). Magnitude electric field at 



point due to two charges as per Coulomb’s Law is|𝐸⃗⃗𝐺| = |𝐸⃗⃗𝐻| =
∆𝑞

4𝜋𝜀0(𝑑2+𝑅2)
…(2). Each of these two fields 

due to diametrically opposite points have two components.  

 

(i) Components of these two fields perpendicular X-axis are equal in magnitude and opposite in direction, 

as shown in figure, and hence would cancel out.  

(ii) Components of along X-axis of magnitude 𝐸𝐺𝑥 = 𝐸𝐻𝑥 = |𝐸⃗⃗𝐻| cos𝜃 …(3), are additive. Here, cos 𝜃 =

𝑑

√𝑑2+𝑅2
…(4). Combining (1)…(4) we have  ∆𝐸𝑥 = 2𝐸𝐺𝑥 = 2 ×

𝑞

2𝜋𝑅
∆𝑙

4𝜋𝜀0(𝑑2+𝑅2)
×

𝑑

√𝑑2+𝑅2
⇒ ∆𝐸𝑥 =

𝑞

𝜋𝑅
×

𝑑∆𝑙

4𝜋(𝑑2+𝑅2)
3
2

…(5). This is magnitude of electric field at P due to two diametrically opposite small elements 

as discussed above. Thus net electric field at P is integral of (5) over semicircular ring. Accordingly, we 

have 𝐸𝑥 = ∫
𝑞

𝜋𝑅
×

𝑑

4𝜋𝜀0(𝑑2+𝑅2)
3
2

∆𝑙
𝐿

2
0

⇒ 𝐸𝑥 =
𝑞

𝜋𝑅
×

𝑑

4𝜋𝜀0(𝑑2+𝑅2)
3
2

∫ ∆𝑙
𝐿

2
0

⇒ 𝐸𝑥 =
𝑞

𝜋𝑅
×

𝑑

4𝜋𝜀0(𝑑2+𝑅2)
3
2

×
𝐿

2
…(6). 

Here, perimeter of the ring 𝐿 = 2𝜋𝑅, therefore using (6), 𝐸𝑥 =
𝑞

𝜋𝑅
×

𝑑

4𝜋𝜀0(𝑑2+𝑅2)
3
2

×
2𝜋𝑅

2
⇒ 𝐸𝑥 =

𝑞𝑑

4𝜋𝜀0(𝑑2+𝑅2)
3
2

…(7). 

Determination of 𝑩 : The ring carrying charge 𝑞 is rotating with an angular velocity 𝜔 = 2𝜋𝑓 ⇒ 𝜔 =
2𝜋

𝑇
⇒

1

𝑇
=

𝜔

2𝜋
…(8). Here 𝑓 is the number of revolutions per second and 𝑇 is time taken to complete one revolution 

i.e. for the charge to go around the ring once. Moreover, current is 𝐼 =
∆𝑄

∆𝑡
⇒  𝐼 =

∆𝑄

∆𝑡
…(9). In the instant case 

∆𝑄 = 𝑞 and ∆𝑡 = 𝑇. Therefore, combining (8) and (9), current caused by the rotating ring is 𝐼 = 𝑞 ×
𝜔

2𝜋
⇒

 𝐼 =
𝑞𝜔

2𝜋
 …(10).  

Magnetic field along axis of a current carrying loop as discussed in Appendix-II is 𝐵 =
𝜇𝑜𝐼𝑅2

2(𝑑2+𝑅2)
3
2

…(11). 

Thus, combining (10) and (11), 𝐵 =
𝜇𝑜(

𝑞𝜔

2𝜋
)𝑅2

2(𝑑2+𝑅2)
3
2

⇒
𝜇𝑜𝑞𝜔𝑅2

4𝜋(𝑑2+𝑅2)
3
2

…(12). 

Using (7) and (12) in the required ratio,  
𝐸𝑥

𝐵
=

𝑞𝑑

4𝜋𝜀0(𝑑2+𝑅2)

3
2

𝜇𝑜𝑞𝜔𝑅2

4𝜋(𝑑2+𝑅2)

3
2

⇒ 
𝐸𝑥

𝐵
=

𝑑

𝜇𝑜𝜀0𝜔𝑅2…(13). We know that 𝜇𝑜𝜀0 =
1

𝑐2, 

here 𝑐 = 3 × 108 m/s. Using it in (13) with he available data 
𝐸𝑥

𝐵
=

𝑑𝑐2

𝜔𝑅2 ⇒ 
𝐸𝑥

𝐵
=

0.05×(3×108)
2

60×(0.20)2
⇒ 

𝐸𝑥

𝐵
= 1.9 ×

1015 m/s is the answer. 

N.B.: Unit of the answer, in a simple way, is derived from units of quantities in its final form as under – 

𝐸𝑥

𝐵
=

𝑚(
𝑚

𝑠
)
2

(
1

𝑠
)𝑚2

⇒
𝐸𝑥

𝐵
=

𝑚3

𝑠2

𝑚2

𝑠

⇒
𝐸𝑥

𝐵
=

𝑚

𝑠
 or 

𝑚

𝑠
. 

I-23 Given system of a thin but long hollow cylindrical tube of radius 𝑟 is a shown in the figure. The 

tube is carrying a current 𝑖. It is required to find magnetic field at points P and Q situated at a 

distance 
𝑟

2
. 

Magnetic field at Point P: Since electric current is flowing through the hollow tube and 

therefore electric current within periphery of radius 𝑟𝑝 =
𝑟

2
 enclosed by point P is 𝑖𝑃 =

0. Therefore, as per Ampere’s Circuital law magnetic field is 𝐵𝑃 = 𝟎, is answer of part (a). 

Magnetic field at Point Q: Again applying Ampere’s Circuital Law for point due to current 𝑖 in 

the tube, which is inside the periphery of a circle of radius 𝑟𝑞 = 𝑟 +
𝑟

2
⇒ 𝑟𝑞 =

3

2
𝑟 …(1), at which 



point Q is located. Therefore, as per Ampere’s Circuital Law 𝜇0𝑖 = ∮𝐵𝑞 𝑑𝑙 ⇒ 𝜇0𝑖 = 𝐵𝑞 ∮𝑑𝑙….(2). Using 

(1), the value of ∮𝑑𝑙 = 2𝜋𝑟𝑞 = 2𝜋 × (
3

2
𝑟) ⇒ ∮𝑑𝑙 = 3𝜋𝑟…(3). 

Combining (2) and (3), 𝜇0𝑖 = 𝐵𝑞 × (3𝜋𝑟) ⇒ 𝐵𝑞 =
𝝁𝟎𝒊

𝟑𝝅𝒓
 is the answer of part (b) 

Thus, answers are (a) Zero    (b) 
𝝁𝟎𝒊

𝟑𝝅𝒓
 

I-24 Given system of a tube of inner radius 𝑟𝑎 = 𝑎 and outer radius 𝑟𝑏 = 𝑏 is 

carrying current 𝑖. It is required to find magnetic field at points P at Q. 

Magnetic Field at P: It is given that point P is at inner surface of the tube. 

Since current is flowing through tube, outside the periphery of point P, and 

inside this periphery electric current is Zero. Hence, as per Ampere’s Circuital 

law, magnetic field at P is Zero is the answer of part (a). 

Magnetic Field at Q: Again applying Ampere’s Circuital Law for this point 

due to current 𝑖 in the tube, which is inside the periphery of a circle of radius 

𝑟𝑏 = 𝑏, at which point Q is located. Therefore, as per Ampere’s Circuital Law 

we have 𝜇0𝑖 = ∮𝐵𝑞 𝑑𝑙 ⇒ 𝜇0𝑖 = 𝐵𝑞 ∮𝑑𝑙….(1). The value of ∮𝑑𝑙 = 2𝜋𝑏…(2) 

Combining (1) and (2), 𝜇0𝑖 = 𝐵𝑞 × (2𝜋𝑏) ⇒ 𝐵𝑞 =
𝝁𝟎𝒊

2𝜋𝑏
 is the answer of part (b) 

Thus, answers are (a) Zero and (b) 
𝝁𝟎𝒊

𝟐𝝅𝒃
 

I-25 Given system of a long cylindrical wire of radius 𝑏 is carrying electric current 𝑖 
uniformly distributed over its cross-section. It is required to find magnetic field at any 

point P at a distance 𝑎 from the loop, as shown in the figure. 

Effective current, responsible for producing magnetic field at the point P, as per 

Ampere’s Circuital Law is 𝑖𝑃 =
𝑖

𝜋𝑏2 × 𝜋𝑎2 ⇒ 𝑖𝑃 =
𝑎2

𝑏2 𝑖…(1). 

As per Ampere’s Law we have 𝜇0𝑖𝑝 = ∮𝐵𝑝 𝑑𝑙 ⇒ 𝜇0𝑖𝑝 = 𝐵𝑝 ∮𝑑𝑙….(2). The value of 

∮𝑑𝑙 = 2𝜋𝑎…(3) Combining (1), (2) and (3), 𝜇0 (
𝑎2

𝑏2 𝑖) = 𝐵𝑝 × (2𝜋𝑎) ⇒ 𝐵𝑝 =
𝝁𝟎𝒊𝒂

2𝜋𝑏2 

is the answer. 

I-26 Given system of a long solid wire of radius 𝑟 = 0.10m is carrying 

electric current 𝐼 = 5.0 A. The current is uniformly distributed over 

its cross-section. It is required to find magnetic field at any points 

A, B and C, as shown in the figure. 

Magnetic Field at A: Effective current, responsible for producing 

magnetic field at the point A at a distance 𝑎 = 0.02m from axis of 

the wire, as per Ampere’s Circuital Law is 𝑖𝑃 =
𝐼

𝜋𝑟2 × 𝜋𝑎2 ⇒ 𝑖𝐴 =

𝑎2

𝑟2 𝐼…(1). 

As per Ampere’s Law we have 𝜇0𝑖𝐴 = ∮𝐵𝐴 𝑑𝑙 ⇒ 𝜇0𝑖𝑝 = 𝐵𝐴 ∮𝑑𝑙….(2). The value of ∮𝑑𝑙 = 2𝜋𝑎…(3) 

Combining (1), (2) and (3), 𝜇0 (
𝑎2

𝑟2 𝐼) = 𝐵𝐴 × (2𝜋𝑎) ⇒ 𝐵𝐴 =
𝜇0𝐼𝑎

2𝜋𝑟2 …(4) 

Using the available data, 𝐵𝐴 =
(4𝜋×10−7)×5.0×0.02

2𝜋×(0.10)2
⇒ 𝐵𝐴 = 2.0 × 10−6 T or 2.0 T is the answer of part (a). 

Magnetic Field at B: Taking forward analysis for point A above, here 𝑟 = 0.10 m, i.e. surface of the wire 

entire current 𝐼 is responsible for producing flux and therefore, using (4), 𝐵𝐵 =
𝜇0𝐼𝑟

2𝜋𝑟2 =
𝜇0𝐼

2𝜋𝑟
. Using the available 

data, 𝐵𝐴 =
(4𝜋×10−7)×5.0

2𝜋×0.10
⇒ 𝐵𝐴 = 10 × 10−6  or 10 T is the answer of part (b). 



Magnetic Field at C: Taking forward analysis for point A above, here 𝑏 = 0.20 m and 𝑏 > 𝑟 i.e. outside the 

wire carrying current 𝐼.  As per Ampere’s Law we have 𝜇0𝐼 = ∮𝐵𝐶 𝑑𝑙 ⇒ 𝜇0𝑖𝑝 =

𝐵𝐶 ∮𝑑𝑙….(2). The value of ∮𝑑𝑙 = 2𝜋𝑏…(3) Combining (1), (2) and (3), 𝜇0𝐼 =

𝐵𝐶 × (2𝜋𝑏) ⇒ 𝐵𝐶 =
𝜇0𝐼

2𝜋𝑏
 …(4).Using the available data, 𝐵𝐶 =

(4𝜋×10−7)×5.0

2𝜋×0.20
⇒

𝐵𝐶 = 5 × 10−6  or 5.0 T is the answer of part (c).  

Using the above illustration graph of magnetic field 𝐵 − 𝑥 is as shown here. 

Thus, answers are (a) 2.0 T     (b) 10 T   (c) 5.0 T. 

I-27 An idealized magnetic field 𝐵⃗⃗ = 𝐵𝑗 ̂is shown in the figure which is unform between 

lines if force KL and MN, but on the left of KL it is zero and so also on the right of 

MN. It is required to prove using Ampere’s Circuital Law that ∮ 𝐵⃗⃗. 𝑑𝑙 = 𝜇0𝑖…(1). 

In the closed path PQRS of the given system shown in figure, length vectors are 

PQ = 𝑎𝑖,̂ QR = 𝑎(−𝑗̂), RS = 𝑏(−𝑖)̂ and SP = 𝑎𝑗.̂ Here, for simplicity QR is taken 

at the brink of idealized magnetic field, where 𝐵 = 0, and sides PQ and RS are in 

region of magnetic field 𝐵. Further, there is no current passing through PQRS and 

hence 𝑖 = 0…(2) 

Let current in the hypothetical loop PQRS is 𝑖. Conjuring LHS of (1) as required in the problem ∮ 𝐵⃗⃗. 𝑑𝑙
PQRS

=

∫ 𝐵⃗⃗.
𝑎

0
𝑑𝑙PQ + ∫ 𝐵⃗⃗.

0

𝑏
𝑑𝑙QR + ∫ 𝐵⃗⃗.

0

𝑎
𝑑𝑙RS + ∫ 𝐵⃗⃗.

𝑏

0
𝑑𝑙PQ. 

This leads to ∮ 𝐵⃗⃗. 𝑑𝑙
PQRS

= ∫ 𝐵 cos
𝜋

2
𝑑𝑙

𝑎

0
+ ∫ 𝐵 cos 0 𝑑𝑙

0

𝑏
+ ∫ 𝐵 cos

𝜋

2
𝑑𝑙

0

𝑎
+ ∫ 𝐵 cos 0𝑑𝑙

𝑏

0
.  

It further, solves to∮ 𝐵⃗⃗. 𝑑𝑙
PQRS

= 𝐵 ∫ 𝑑𝑙
𝑏

0
⇒ ∮ 𝐵⃗⃗. 𝑑𝑙

PQRS
= 𝐵𝑏…(3) 

Combining (2) and (3) in (1), we should have 𝐵𝑏 = 𝜇0 × 0 ⇒ 𝐵𝑏 = 0 …(4). 

In (4) both the multiplicands are distinct and non-zero and hence the equation is not valid, the proposition 

that the idealized magnetic field is not possible is proved 

I-28 Magnetic field at a point near a large metal sheet carrying uniform surface 

current has been analyzed in Appendix-IV. It is seen that magnetic field is 

(a) proportional to surface current density, (b) independent to the distance 

from the large sheet and (c) direction of magnetic field can be determined 

applying Ampere’s Right Hand Thumb Rule. It is summarized as 𝐵 =
𝜇0𝐾

2
…(1). 

Above inferences are  applied to the given problem where at each of the points P, Q and R, magnetic field is 

resultant of the magnetic fields, due to two sheets carrying currents in opposite direction, at point P is 𝐵P =

𝐵R =
𝜇0𝐾

2
+ (−)

𝜇0𝐾

2
 …(2). While at point Q, in the space between the two sheets carrying currents in opposite 

directions is 𝐵Q =
𝜇0𝐾

2
+

𝜇0𝐾

2
⇒ 𝐵Q = 𝜇0𝐾…(3), in a direction towards the Right Hand side. 

Thus, answer at point P is Zero, at Q is 𝝁𝟎𝑲towards right in the figure, and at R is Zero 

N.B.: Appendix IV elaborates analysis of magnetic field by a metal sheet carrying uniform current. This can 

be also analyzed using Ampere’s Circuital Law ∮𝐵. 𝑑𝑙 = 𝜇0𝐼 to determine magnetic field at any point near a 

large sheet of width 𝑥, current is 𝐼 = 𝑘𝑥 and length of the path surrounding a large sheet is 𝑙 = 2𝑥. Taking 

𝐵⃗⃗ along 𝑑𝑙. As per the law it leads to 𝐵 × 2𝑥 = 𝜇0 × 𝐾𝑋 ⇒ 𝐵 =
𝜇0𝐾

2
. In the problem sheet is taken to be large 

and hence end effect on path length can be ignored. 

I-29 Extension of Appendix-IV to the given problem provides magnetic field at 

point Q in space between two large metal sheets carrying uniformly 



distributed current density 𝐾, in opposite directions, 𝐵Q =
𝜇0𝐾

2
+

𝜇0𝐾

2
⇒ 𝐵Q = 𝜇0𝐾…(1) 

Further problem states that a particle carrying a charge 𝑞 and mass 𝑚 is projected into the plane of the diagram 

as shown in the figure. Therefore, as per Lorentz’s Force Law, 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣𝐵Q sin
𝜋

2
𝑛̂…(2). 

Combining (1) and (2), magnitude of force is 𝐹 = (𝑞𝑣) × (𝜇0𝐾)…(3). 

Further, it is stated that particle is describes a circle of radius 𝑟. This is possible when, as per principle of 

circular motion 𝐹 =
𝑚𝑣2

𝑟
…(4). Equating (3) and (4), 

𝑚𝑣2

𝑟
= 𝑞𝑣𝜇0𝐾 ⇒ 𝒗 =

𝒒𝝁𝟎𝑲𝒓

𝒎
 is the answer. 

N.B.: To correlate (1) with basic concepts refer to Appendix-IV. 

I-30 Magnetic field inside a compact coil is carrying current 𝑖 is 𝐵 = 𝜇0𝑁𝑖, in case of a solenoid 𝐵 = 𝜇0𝑛𝑙𝑖…(1). 

Here 𝑛 is number of turns per unit length, 𝑙 is the length of the solenoid.  Using the given data in (1) we have, 

3.14 × 10−2 = (4𝜋 × 10−7) × 𝑛 × 5.00 ⇒ 𝑛 =
3.14×10−2

20.0×𝜋×10−7 ⇒ 𝑛 =
105

20.0
⇒ 𝑛 = 𝟓𝟎𝟎𝟎 turns/m is the 

answer. 

I-31 Magnetic field inside a compact coil is carrying current 𝑖 is 𝐵 = 𝜇0𝑁𝑖, in case of a solenoid 𝐵 = 𝜇0𝑛𝑙𝑖…(1). 

Here 𝑛 is number of turns per unit length, 𝑙 is the length of the solenoid. Given that solenoid is closely wound 

using a wire of radius 𝑟 = 0.5 × 10−3 m. Therefore number of turns per meter length would be 𝑛 =
1

2𝑟
, here 

2𝑟  is the center-to-center spacing between two turns of the solenoid. Thus using the given data in (1) we have, 

𝐵 = (4𝜋 × 10−7) ×
1

2×(0.5×10−3)
× 5 ⇒ 𝑛 = 20𝜋 × 10−4 ⇒ 𝑛 = 𝟐𝝅 × 𝟏𝟎−𝟑T is the answer. 

N.B.: Here answer is reported on the principle of significant digits. 

I-32 Magnetic field 𝐵 inside a solneoid carrying current 𝐼 is 𝐵 = 𝜇0𝑛𝐼…(1). Here, 𝑛 is number of turns per–meter 

length and 𝐼 is current through the solnoid. In problem no mention has been made of radius of wire and there 

fore it can be safely assumed the solenoid is having a single layer of 𝑁 = 400 turns over a length 𝑙 = 0.20 m. 

Thus, 𝑛 =
𝑁

𝑙
⇒ 𝑛 =

400

0.20
= 2.0 × 103 

Further, it is given that radius of the solenoid radius 𝑟 = 1.0 × 10−3. Therefore, length of wire having 𝑁 turns 

is 𝐿 = 2𝜋𝑟𝑛…(2).  Accordingly, with the given resistance of wire per unit length 𝑅′ = 0.01 /m net resistance 

of the wire is  𝑅 = 𝐿𝑅′ ⇒ 𝑅 = 2𝜋𝑟𝑛𝑅′…(3). Thus, using the available data 𝑅 = 2𝜋 × (1.0 × 10−2) × 400 ×

0.01 ⇒ 𝑅 = 8.0𝜋 × 10−2

Magnetic field 𝐵 inside a solneoid carrying current 𝐼 is 𝐵 = 𝜇0𝑛𝐼. No mention has been made of radius of 

wire and there fore it can be safely assumed the solenoid is having a single layer of 𝑁 = 400 turns over a 

length 𝑙 = 0.20 m. 

⇒ 𝐼 =
𝐵

𝜇0𝑛
⇒ 𝐼 =

1.0×10−2

(4𝜋×10−7)×(2.0×103)
⇒ 𝐼 =

102

8𝜋
 …(3). 

As per Ohm’s Law 𝐸 = 𝐼𝑅…(4). Using data in (2) and (3) in (4), we have 𝐸 = (
102

8𝜋
) × (8.0𝜋 × 10−2). It 

solves into 𝐸 = 𝟏. 𝟎 V is the answer. 

N.B.: Answer is reported using principle of SDs. 

I-33 Given system is shown in the figure where number 

of turns per unit length of a tightly wound solenoid 

is 𝑛/m. This is implicit in statement that number of 

turns in small length of coil 𝑑𝑥 and is approximated 

to current 𝐼 = 𝑛𝑖𝑑𝑥…(1) in a loop. 

As per Biot=Savart’s Law magnetic field at a point 

displaced by 𝑥 from center of the loop the axis of loop of radius 𝑟 , as per Appendix-II, is 𝐵 =
𝜇0𝐼

2
×

𝑟2

(𝑥2+𝑟2)
3
2

 

…(2). 



In the instant case the point at which magnetic field is to be determined is O and 𝑟 → 𝑎, while distance of the 

loop from O is 𝑥 →
𝑙

2
− 𝑥 and, therefore, transformation of variables together with (1) leads to- 

𝑑𝐵0 =
𝜇0𝑛𝑖𝑑𝑥

2
×

𝑎2

((
𝑙

2
−𝑥)

2
+𝑎2)

3
2

⇒ 𝑑𝐵0 =
𝜇0𝑛𝑖𝑎2

2
×

1

((
𝑙

2
−𝑥)

2
+𝑎2)

3
2

𝑑𝑥…(3). 

Here, 𝑥 varies from 𝑥 = 0 to 𝑥 = 𝑙, and net magnetic field at O is 𝐵0 =
𝜇0𝑛𝑖𝑎2

2
∫

1

((
𝑙

2
−𝑥)

2
+𝑎2)

3
2

𝑑𝑥
𝑙

0
…(4), as 

desired in the problem. 

Integrating (4), 𝐵0 =
𝜇0𝑛𝑖𝑎2

2
[∫

1

((𝑎 tan𝜃)2+𝑎2)
3
2

𝑑𝑥]
0

𝑙

, here 𝑎 tan𝜃 =
𝑙

2
− 𝑥 ⇒ 𝑎 sec2 𝜃 𝑑𝜃 = −𝑑𝑥. Also, 

tan 𝜃 =
𝑙−2𝑥

2𝑎
. Thus, we have, 𝐵0 =

𝜇0𝑛𝑖𝑎2

2
[∫

(−)𝑎 sec2 𝜃

((𝑎 tan𝜃)2+𝑎2)
3
2

𝑑𝜃]
0

𝑙

⇒ 𝐵0 = (−)
𝜇0𝑛𝑖𝑎2

2
[∫

𝑎 cos𝜃

(𝑎 sec𝜃)3
𝑑𝜃]

0

𝑙
⇒ 𝐵0 =

(−)
𝜇0𝑛𝑖

2
[∫ cos𝜃 𝑑𝜃]0

𝑙 . It solves into 𝐵0 =
𝜇0𝑛𝑖

2
[sin 𝜃]𝑙

0…(5). 

Transforming sin𝜃 =
tan𝜃

√1+tan2 𝜃
⇒ sin𝜃 =

𝑙−2𝑥

2𝑎

√1+(
𝑙−2𝑥

2𝑎
)
2

⇒ sin𝜃 =
𝑙−2𝑥

√4𝑎2+(𝑙−2𝑥)2
…(6). 

Combining (5) and (6), 𝐵0 =
𝜇0𝑛𝑖

2
[

𝑙−2𝑥

√4𝑎2+(𝑙−2𝑥)2
]
𝑙

0

⇒ 𝐵0 =
𝜇0𝑛𝑖

2
[

𝑙

√4𝑎2+𝑙2
−

𝑙−2𝑙

√4𝑎2+(𝑙−2𝑙)2
 ].  

It solves into 𝐵0 =
𝜇0𝑛𝑖

2
[

𝑙

√4𝑎2+𝑙2
+

𝑙

√4𝑎2+𝑙2
 ] ⇒ 𝐵0 =

𝜇0𝑛𝑖𝑙

√4𝑎2+𝑙2
⇒ 𝐵0 =

𝝁𝟎𝒏𝒊

√𝟏+(
𝟐𝒂

𝒍
)
𝟐
is the answer of part (a). 

Taking 𝑙 ≫ 𝑎 then 
2𝑎

𝑙
→ 0, it leads to 𝐵0 =

𝝁𝟎𝒏𝒊

√𝟏+(𝟎)𝟐
⇒ 𝐵0 = 𝝁𝟎𝒏𝒊, and if 𝑎 ≫ 𝑙 then, 1 + (

2𝑎

𝑙
)
2

→ (
2𝑎

𝑙
)
2
. It 

leads to 𝐵0 =
𝝁𝟎𝒏𝒊

√(
𝟐𝒂

𝒍
)
𝟐
⇒ 𝐵0 =

𝝁𝟎𝒏𝒊
𝟐𝒂

𝒍

⇒ 𝐵0 =
𝝁𝟎𝒏𝒊𝒍

𝟐𝒂
, both the cases are proved. 

 

I-34 Electric field inside a long, tightly-wound solenoid carrying current 𝐼 = 2.00 A is 𝐵 = 𝜇0𝑛𝐼…(1), here 𝑛 is 

number of turns per unit length. If an electron is found to perform uniform circular motion  of frequency 𝑓 =
1.00 × 108rev/s then it implies that – 

(a) Uniform circular motion of electron constitutes a current 

𝑖 = 𝑒𝑣 ⇒ 𝑖 = 𝑒 × 2𝜋𝑟𝑓…(2) 

(b) Uniform circular motion would cause a centripetal force 

𝐹 = 𝑚𝑟𝜔2 ⇒ 𝐹 = 𝑚𝑟(2𝜋𝑓)2…(3) 

(c) As per Lorentz’s Force Law force on electron 𝐹⃗ = 𝑒𝑣⃗ ×

𝐵⃗⃗ ⇒ 𝐹 = 𝑞𝑣𝐵. Combining this with (2) we have 𝐹 =
2𝜋𝑞𝑟𝑓𝐵 …(4) 

Lorentz’s force at (4) constitutes centripetal force at (3) as shown 

in the figure. Accordingly, 𝑚𝑟(2𝜋𝑓)2 = 2𝜋𝑒𝑟𝑓𝐵 ⇒ 𝑒𝐵 =
2𝑚𝜋𝑓…(5). 

Combine (1) and (5), 𝑒(𝜇0𝑛𝐼) = 2𝑚𝜋𝑓 ⇒ 𝑛 = (
𝑚

𝑒
) ×

2𝜋𝑓

(4𝜋×10−7)×𝐼
…(6). 

Using the available data in (6) together with mass of electron 𝑚 = 9.1 × 10−31kg and magnitude of charge 

of an electron 𝑞 = 1.6 × 10−19 C we have 𝑛 =
9.1×10−31

1.6×10−19 ×
1.00×108

2×2.0×10−7 ⇒ 1.42 × 103turns or 1420 Turns is 

the answer. 



N.B.: The problem apparently looks quite complex. Yet a systematic resolutions of problems in a step-by-

step leads to cancellation of many parameters, and a simple solution. 

I-35 Given system is shown in the figure. A tightly-wound 

solenoid of radius 𝑟 having  𝑛 turns per meter length is 

carrying current 𝐼. Therefore, magnetic field throughout the 

cross-section of the coil is 𝐵 = 𝜇0𝑛𝐼…(1). 

A particle carrying charge 𝑞 projected from a point on the 

axis of the solenoid with some velocity 𝑣., perpendicular to 

the axis. 

The constraint of velocity is that  it is maximum velocity  yet 

the particle does not strike the solenoid. 

It is a fit case for application of Lorentz’s Force Law 𝐹⃗ =

𝑞𝑣⃗ × 𝐵⃗⃗. This force is perpendicular to the velocity of the 

charged particle such that 𝐹 = 𝑞𝑣𝐵…(2). The latter makes it a fit case of circular motion having radius of the 

path 𝑟 of the charged particle, such that centripetal force e 𝐹 =
𝑚𝑣2

𝑟
…(3). 

Combining (1), (2) and (3) 
𝑚𝑣2

𝑟
= 𝑞𝑣(𝜇0𝑛𝐼) ⇒ 𝑣 =

𝜇0𝑞𝑛𝐼𝑟

𝑚
…(4). It is seen that 𝑣 ∝ 𝑟. It is required to find 

maximum velocity such that the particle does no touch the solenoid or 2𝑟𝑚𝑎𝑥 = 𝑅 ⇒ 𝑟𝑚𝑎𝑥 =
𝑅

2
. Therefore, for 

𝑣 → 𝑣𝑚𝑎𝑥 ⇒ 𝑟 → 𝑟𝑚𝑎𝑥. Accordingly for the limiting value 𝑣𝑚𝑎𝑥 =
𝜇0𝑞𝑛𝐼𝑟𝑚𝑎𝑥

𝑚
⇒ 𝑣𝑚𝑎𝑥 =

𝝁𝟎𝒒𝒏𝑰𝑹

𝟐𝒎
 is the 

answer. 

N.B.: Creating a figure illustrating the system makes it easy to visualize the physics that goes into the problem 

and thus evolve solution to a problem apparently complicated. 

I-36 Given system is shown in the figure along with the direction of magnetic 

fields 𝐵So produced by solenoid, having tightly-wound 𝑛 turns per meter. 

carrying current 𝑖 and 𝐵Sh produced by sheet carrying surface current 𝐼 =
𝑘𝑑𝑙 through width 𝑑𝑙. It is proved that 𝐵So = 𝜇0𝑛𝑖…(1) and in Appendix 

IV we see that 𝐵Sh =
𝜇0𝐾

2
…(2). 

It is seen in the figure that, for the direction of currents as considered, 𝐵Sh 

and 𝐵So are in opposite directions. Therefore magnetic field near center of the solenoid to be zero, we have 

from (1) and (2), 𝜇0𝑛𝑖 =
𝜇0𝐾

2
⇒ 𝑖 =

𝑲

𝟐𝒏
 is the answer of part (a). 

Part (b) of the problem requires to determine magnetic field when solenoid carrying 

current 𝑖 =
𝐾

2𝑛
…(3), in earlier case is turned through perpendicular to the axis of the 

sheet. It implies that axis of the solenoid is parallel to the surface current in the sheet. It 

leads to a situation two magnetic fields  𝐵Sh and 𝐵So  of equal magnitude are 

perpendicular to each other, whichever way, as shown here. Therefore, resultant 

magnetic field would be 𝐵 = √𝐵So
2 + 𝐵Sh

2…(4).  

Combining (1)..(3) in (4), we have 𝐵 = √(𝜇0𝑛 ×
𝐾

2𝑛
)
2
+ (

𝜇0𝐾

2
)
2

⇒ 𝐵 = √(
𝜇0𝐾

2
)
2
+ (

𝜇0𝐾

2
)
2

⇒ 𝐵 =
𝝁𝟎𝑲

√𝟐
 is 

the answer of part (b) 

Thus, answers are (a) 
𝑲

𝟐𝒏
   (b) 

𝝁𝟎𝑲

√𝟐
 

I-37 In absence of any other data it is safe to assume that the capacitor capacitance 𝐶 = 100 × 10−6 F and the long 

solenoid form an RC circuit. The capacitor is kept fully charged to a potential difference 𝑉0 = 𝑉 = 20 Volts. 



Thus drop of voltage across the capacitor to 𝑉𝑡 = 0.90𝑉0, i.e. 90% of maximum value 𝑉0 = 𝑉 value, during 

𝑡 = 2.0 s is considered to be linear. 

Charge on a capacitor is 𝑄 = 𝐶𝑉…(1). Accordingly, initial charge on the capacitor 𝑄0 = 𝐶𝑉0...(2) After time 

𝑡 charge on the capacitor is 𝑄𝑡 = 𝐶𝑉𝑡 = 𝐶(0.90𝑉0)…(3). Therefore, average current through the solenoid 

having 𝑛 = 4000 turns/mteterduring the period 0 < 𝑡 < 2.0 is 𝑖 =
𝑄𝑡−𝑄0

𝑡
…(4). 

Magnetic field at the center of a solenoid carrying current 𝑖 is 𝐵 = 𝜇0𝑛𝑖…(5). Combining (1)..(4) in (5) we 

have 𝐵 = (4𝜋 × 10−7) × 4000 × (
𝑄𝑡−𝑄0

𝑡
) ⇒ 𝐵 = (4𝜋 × 10−7) × 4000 ×

𝐶𝑉0−0.90𝐶𝑉0

𝑡
. Using the 

available data 𝐵 = (16𝜋 × 10−4) ×
0.10×(100×10−6)×20

2.0
⇒ 𝐵 = 𝟏𝟔𝝅 × 𝟏𝟎−𝟖T is the answer. 
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Appendix-I 

Torque on Small Current Carrying Loop Placed Inside Another Current Carrying Loop 

Part A - Magnetic Field at the Center of a Current Carrying Loop: Let us consider a loop of radius 𝑅 carrying current 

𝐼 in anti-clockwise direction. The loop is taken to be in 𝑖̂ − 𝑗̂ plane and in accordance with the three unit directions vectors 

are also shown for reference in Fig. 1. 

Biot-Savart’s Law stipulated direction and magnitude 

of magnetic field at a point situated at a distance 𝑟 

from a wire of length ∆𝑙 = ∆𝑙𝑙 carrying current 𝐼 

along 𝑙  . According to the law, as shown in Fig. 2.- 

∆𝐵⃗⃗ =
𝜇0𝐼

4𝜋𝑅2
∆𝑙 × 𝑟̂ ⇒ ∆𝐵⃗⃗ =

𝜇0𝐼

4𝜋𝑅2
∆𝑙𝑙  × 𝑟̂ 

∆𝐵⃗⃗ =
𝜇0𝐼∆𝑙

4𝜋𝑅2 𝑘̂…(1). 

Taking the elemental length ∆𝑙 is part of a circle of 

radius 𝑅 which subtends an angle ∆𝜃  at the circle of 

the circle such that ∆𝑙 = 𝑅 × ∆𝜃…(2).  

Combining (1) and (2), ∆𝐵⃗⃗ =
𝜇0𝐼𝑅∆𝜃

4𝜋𝑅2 𝑘̂. Thus, in the instant case, having ascertained 

direction of the magnetic field at O  as 𝑘̂.its magnitude is ∆𝐵 =
𝜇0𝐼∆𝜃

4𝜋𝑅
…(3).  

Accordingly, magnitude of the net magnetic field at the center of the circular 

loop is 𝐵 = ∫
𝜇0𝐼

4𝜋𝑅
𝑑𝜃

2𝜋

0
⇒ 𝐵 =

𝜇0𝐼

4𝜋𝑅
[𝜃]0

2𝜋 ⇒ 𝐵 =
𝜇0𝐼

4𝜋𝑅
× 2𝜋. It leads to  𝑩 =

𝝁𝟎𝑰

𝟐𝑹
…(4). This magnetic field at O is in along 𝒌̂ . 

The direction of magnetic field in this can also ascertained using Right-

Hand-Thumb-Rule applied to circular loop for convenience as shown in Fig. 

3, which when applied to loop or coil is as per Fig.4. 

Area of a loop of radius 𝑅 is 𝐴 =
𝜋𝑅2. This loop if carries current 𝒊 in 

anticlockwise direction then in 

vector form 𝐴 = 𝜋𝑅2𝑘̂. Since, 

current in isolation is treated as a 

scalar and hence for a current 

carrying loop a new term is 

magnetic dipole moment of a 

current carrying loop which is 

defined as   𝝁⃗⃗⃗ = 𝒊𝑨⃗⃗⃗ and in instant 

case 𝜇 = 𝑖𝜋𝑅2𝑘̂…(5).  

Part B – Interaction of Magnetic Fields of Two Current Carrying Concentric Loops: Two current carrying concentric 

loops A and B having magnetic dipole moments  𝜇𝐴 and 𝜇𝐵,, respectively will exhibit resultant magnetic dipole moment 

𝜇 = 𝜇𝐴 + 𝜇𝐵…(6) 

Part C – Torque on Current Carrying Loops: Taking two loops in a state of rest, they would experience equal and 

opposite torques as per Newton’s Third Law of Motion. Generally concern is about a small loop of radius 𝑟 carrying current 

at the center of an outer loop having  much larger radius  𝑅 ≫ 𝑟. In case of coplanar loop discussions at part B above. In 

case of coplanar loop resultant magnetic dipole moments are either arithmetic sum or difference of the two dipole moments 

depending upon direction of their currents as discussed in part A. 
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But, it becomes an important pair of loops only when they are inclined with respect to each other a torque appears and 

there. The loops are taken to be concentric and they have radial symmetry about the common axis. There are two 

possibilities, each of them are analyzed below – 

Case 1- Planes of loops are perpendicular to each other:  

A circular loop of radius 𝑅 carrying a current 𝐼 is placed in 𝑖̂ − 𝑗̂ plane as shown in the figure. Axis of the loop is along 𝑘̂. 

As per (4), in accordance with Biot-Savart’s law it will produce magnetic field 𝐵⃗⃗ =
𝜇0

2𝑅
𝑘̂, at the center of the loop. Further, 

it is given that another circular loop of radius 𝑟 carrying current 𝑖 in anti-clockwise direction as seen against 𝑖.̂ The small 

loop, as shown in the Fig. 5, is in 𝑗̂ − 𝑘̂ plane.  

From the statement of the system shown in the figure on the left, it is observed that – 

a) magnetic field at the center of the outer loop of radius 𝑅 is 𝐵⃗⃗.   
b) plane of the smaller loop of radius 𝑟 is along the magnetic field. 

c) given that 𝑟 ≪ 𝑅, and geometrical symmetry of the loop, force experienced by 

inner coil as per will produce a torque about diameter of smaller coil.  We take for 

convenience diameter of loop along Y-Y’ i.e. 𝑗̂. 

Taking forward analysis force on a small element of 

inner loop of length ∆𝑙 = 𝑟∆𝜃𝑙, as per (2), carrying 

current 𝑖,  as per Fig. 6, is as per limited version of 

Lorentz’s Force Law  ∆𝐹⃗ = 𝑖𝑙 × 𝐵⃗⃗ ⇒ ∆𝐹⃗ =

𝑖(𝑟∆𝜃𝑙 ) × 𝐵⃗⃗…(7).  Here, the other part of the law which defines force on free 

charges, as none is there, is ignored. The force as a result of cross-product is ∆𝐹⃗ =
𝑖𝑟𝐵 sin 𝜃 ∆𝜃(−𝑖)̂….(7).  

Therefore, torque experienced by the element of loop about diameter Y-Y’ would 

be ∆𝛤⃗ = 𝑄𝑃⃗⃗⃗⃗ ⃗⃗ × ∆𝐹⃗ as per Fig. 7. 

Combining (7) with the geometry, it leads to ∆𝛤⃗ = (𝑟 sin𝜃 𝑘̂) ×

(𝑖𝑟𝐵 sin𝜃 ∆𝜃(−𝑖)̂)….(8). This expression simplifies into ∆𝛤⃗ =

𝑖𝐵𝑟2 sin2 𝜃 ∆𝜃(−𝑗̂) ⇒ ∆𝛤⃗ =
𝑖𝐵𝑟2

2
(1 − cos2𝜃)∆𝜃(−𝑗̂) ...(9). Thus, net torque 

would be 𝛤⃗ = [∫
𝑖𝐵𝑟2

2
(1 − cos 2𝜃)∆𝜃

2𝜋

0
] (−𝑗̂). The integral simplifies to 𝛤⃗ =

𝑖𝐵𝑟2

2
[∫ 𝑑𝜃

2𝜋

0
− ∫ cos 2𝜃  𝑑𝜃

2𝜋

0
] (−𝑗̂) ⇒ 𝛤⃗ =

𝑖𝐵𝑟2

2
× 2𝜋(−𝑗̂). Thus, net torque on 

the inner loop is 𝛤⃗ = 𝑖𝐵𝜋𝑟2(−𝑗̂)…(10). 

Combining (4) and (10), magnitude of the torque is  𝛤 = 𝑖 (
𝜇0𝐼

2𝑅
) 𝜋𝑟2 ⇒ 𝜞 =

𝝁𝟎𝝅𝒊𝑰𝒓𝟐

𝟐𝑹
….(11) 

Using (5), expression in (11) can be expressed as 𝛤⃗ = 𝑖𝐴 × 𝐵⃗⃗ ⇒ 𝛤⃗ = 𝜇 × 𝐵⃗⃗…(12). Here, magnetic dipole moment of a 

loop is 𝜇 = 𝑖𝐴 and in case of coil 𝜇 = 𝑛𝑖𝐴…(13).  

Case 1- Planes of loops are inclined at an angle 𝜶: Plane of 

the larger loop creating magnetic field 𝐵⃗⃗ = 𝐵𝑘̂ is along plane 

𝑖̂ − 𝑗̂. is shown in the Fig 8 (View from 𝑘̂). Let plane of the 

smaller loop of radius 𝑟 is inclined to  the plane of larger loop 

at an angle 𝛼, as shown in the Fig. 8 (View from 𝑖)̂. 
Considering radial symmetry the inclination is taken w.r.t, Y-

Y’ as shown in the figure  i.e. 𝑗̂. In this diameter along X-X’ 

remains aligned to 𝑖.̂ Thus, area vector of the loop, with 

respect to direction current 𝑖 in it as discussed in part A, is 𝐴 

and inclined at an angle 𝛼 w.r.t.𝐵⃗⃗.  
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Each small length of loop ∆𝑙 = 𝑟∆𝜃𝑙 , due to current 𝑖, would experience force ∆𝑓 = 𝑖(𝑟∆𝜃𝑙 ) × 𝐵⃗⃗ as per (7).   In this 

orientation ∆𝑓 = ∆𝑓(−𝑗̂) on the semicircular arc on the right of X-X’. Likewise,  ∆𝑓 = ∆𝑓(𝑗̂) on the semicircular arc on 

the left of X-X’ to current 𝑖 in the loop.  

These distributed forces along the two semicircular arc would form a couple about Y-Y’ causing rotation of loop about O 

along 𝑖.̂ In an effort to quantify torque on the inclined loop elemental force ∆𝑓 is resolution of QP perpendicular to Y-Y’ 

and it is PR = QP sin𝛼…(14), as shown in the Fig. 9. Accordingly, torque equation 

in (9) is moderated into- 

∆𝛤⃗ = 𝑃𝑅⃗⃗⃗⃗⃗⃗ × (𝑖𝑟𝐵 sin𝜃 ∆𝜃(𝑙)) ⇒ ∆𝛤⃗ = (𝑄𝑃 sin𝛼 𝑘̂) × (𝑖𝑟𝐵 sin 𝜃 ∆𝜃(𝑙)) 

 ∆𝛤⃗ = ((𝑟 sin 𝜃) sin 𝛼 𝑘̂) × (𝑖𝑟𝐵 sin 𝜃 ∆𝜃(𝑙)). On integration it solves into   

           𝛤⃗ =  𝑖𝐵𝜋𝑟2 sin 𝛼 (𝑖)̂ ⇒ 𝛤⃗ = 𝑖𝐴 × 𝐵⃗⃗ ⇒ 𝛤⃗ = 𝜇 × 𝐵⃗⃗…(15) 

 

It is seen that torque on a loop carrying current loop/coil produced (by an external magnetic field derived in (15) and is 

identical to that derived in (12). In the latter case 𝛼 =
𝜋

2
 when both coils are perpendicular. 

Conclusion: In general form torque experienced by a current carrying loop placed in a uniform electric field produced by 

a large loop carrying current  𝐼, as per (12) and (16), would be  𝛤⃗ = 𝜇 × 𝐵⃗⃗ = 𝜇𝐵 sin𝛼 𝛤̂ ⇒ 𝛤⃗ =
 𝝁𝟎𝝅𝒊𝑰𝒓𝟐

𝟐𝑹
𝐬𝐢𝐧𝜶 𝛤̂…(16). 

Here, 𝜇 = 𝑖(𝜋𝑟2) and 𝜇 sin𝛼 = 𝑖(𝜋𝑟2 sin 𝛼). Thus, in (16) 𝜋𝑟2 sin 𝛼 = 𝐴 sin𝛼 is the area of the current carrying  turn, 

resolved perpendicular to the magnetic field perpendicular that it intercepts. Accordingly, 𝜞⃗⃗⃗ = 𝝁⃗⃗⃗ × 𝑩⃗⃗⃗ is the general 

expression of torque experienced by a current carrying urn of any shape when placed in a uniform magnetic field and 

simplifies analysis in complex situations 

—00— 

Appendix-II 

Magnetic Field at a Point on the Axis a Coil 

 
Given is a circular coil containing 𝑛 = 200 turns of radius 𝑅 = 0.10 m in 𝑖̂ − 𝑘̂ plane carrying current 𝐼 = 2.0 A. As per 

Biot-Savart’s Law, magnetic field at point P on the axis of the loop at a distance 𝑑 from the center of the loop O; a distance 

𝑟 from a small element of wire of length ∆𝑙 = 𝑟∆𝜃𝑙 will be ∆𝐵⃗⃗𝑃 =
𝜇𝑜𝑛𝐼𝑅∆𝜃

4𝜋𝑟2 𝐵𝑟̂, here ∆𝐵𝑃 =
𝜇𝑜𝑛𝐼𝑅∆𝜃

4𝜋𝑟2 …(1)This magnetic 

field has two components ∆𝐵⃗⃗𝑃 = ∆𝐵⃗⃗𝑗 + ∆𝐵⃗⃗𝑁 ⇒ ∆𝐵⃗⃗𝑃 = ∆𝐵𝑃 cos (
𝜋

2
− 𝛼) 𝑗̂ + ∆𝐵𝑃 sin (

𝜋

2
− 𝛼) 𝑁̂. It simplifies into 𝐵⃗⃗𝑃 =

∆𝐵𝑃 sin 𝛼 𝑗̂ + ∆𝐵𝑃 cos 𝛼 𝑁̂…(2), as shown in the figure. With the symmetry of the loop about its axis  O, the component 

of magnetic field along the loop 𝑁̂ will cancel out leaving the component along 𝑗̂ to be only effective. 

 

Thus, combining (1) and (2), net magnetic field at point P, due to the loop is 𝐵𝑃 =

∫
𝜇𝑜𝑛𝐼𝑅∆𝜃

4𝜋𝑟2

2𝜋

0
sin 𝛼 ⇒ 𝐵𝑃 =

𝜇𝑜𝑛𝐼𝑅 sin𝛼

4𝜋𝑟2 ∫ 𝑑𝜃
2𝜋

0
⇒ 𝐵𝑃 =

𝜇𝑜𝑛𝐼𝑅 sin𝛼

4𝜋𝑟2 × 2𝜋 ⇒ 𝐵𝑃 =

𝜇𝑜𝑛𝐼𝑅 sin𝛼

2𝑟2 …(3). It is seen from the figure that sin𝛼 =
𝑅

𝑟
, therefore, 𝐵𝑃 =

𝜇𝑜𝑛𝐼𝑅2

2𝑟3 . 

Further, 𝑟 = √𝑑2 + 𝑅2 therefore, 𝐵𝑃 =
𝜇𝑜𝑛𝐼𝑅2

2(𝑑2+𝑅2)
3
2

 …(4). 

 

At the center of the coil P → O, 𝑟 → 𝑅 and 𝛼 →
𝜋

2
 and, therefore, using (3) 𝐵𝑂 =

𝜇𝑜𝑛𝐼𝑅 sin
𝜋

2

2𝑅2 . It solves into 𝐵𝑂 =
𝜇𝑜𝑛𝐼

2𝑅
…(5).  

 

 

 

 

 

Fig. 9 



In case of a circular loop 𝑛 = 1 accordingly equations (4) and (5) become 𝐵𝑃 =
𝜇𝑜𝐼𝑅2

2(𝑑2+𝑅2)
3
2

 …(6) and  𝐵𝑂 =
𝜇𝑜𝐼

2𝑅
…(7), 

respectively. 

—00— 

Appendix-III 
Magnetic Field at Any Point Inside a Circular Loop Carrying Current 

Synopsis 

This paper is an outcome of discussions with students of class 9th to 12th on electromagnetism during which it was 

observed that all texts and references cover derivation of magnetic field at the center of a current carrying circular 

loop and at any point on axis of the loop, perpendicular to the plane of the loop. An obvious question cropped up 

‘what could be magnetic field at any point inside the loop lying in its plane?’ Interactive Online Mentoring Sessions 

(IOMS), flagship of Gyan Vigyan Sarita, which focuses on grooming competence to compete among unprivileged 

children with a sense of Personal Social Responsibility (PSR) in a non-organizational, non-remunerative, non-

commercial and non-political manner. As a mentor of the initiative where students are prompted to come out of 

rote-learning and explore mathematics and science with an out-of-box perspective in their day-today experiences, 

the obvious question could not be averted. Accordingly, an illustration of the solution to the question has been 

evolved within the scope of understanding of target students. 

Problem Formulation: Consider a point P inside a circular loop of radius 𝑅 in 𝑗̂ − 𝑘̂ plane carrying a current 𝐼. The point 

P is at a distance 𝑎 from the center of the loop. It is required to determine magnetic field 𝐵 at P, as shown in the figure. 

As per Biot-Savart’s Law magnetic field at a point P at a distance 𝑟 = 𝑟𝑟̂ from a 

small length of loop ∆𝑙 carrying current 𝐼 is ∆𝐵⃗⃗ = (
𝜇0𝐼

4𝜋
)

∆𝑙×𝑟̂

𝑟2 ….(1). In the system 

small length  of wire is RS such that ∆𝑙 = (𝑅∆𝜃)𝑙 and point is P at which 

magnetic flux density is to be determined is displaced by 𝑟. As ∆𝜃 → 0 the 

element ∆𝑙 becomes tangential to radial OA and hence (1) can be written as ∆𝐵⃗⃗ =

((
𝜇0𝐼𝑅

4𝜋
)

sin(
𝜋

2
+𝛼)

𝑟2 ∆𝜃) 𝑖̂ ⇒  ∆𝐵⃗⃗ = ((
𝜇0𝐼𝑅

4𝜋
)

cos𝛼

𝑟2 ∆𝜃) 𝑖̂…(2). 

Problem Resolution: It is seen that (2) has three variables such that 𝐵 =

𝑓(𝑟, 𝛼, 𝜃) and 𝐵 at P can be obtained by integrating (2) w.r.t. 𝜃 in the interval 

[0,2𝜋] to arrive at net magnetic field at the point due to the loop. Therefore, integrand in (2) has to be formulated as a 

function only of 𝜃, by eliminating 𝑟 and 𝛼, with the related parameters  𝑅 and 𝑎 which are geometrical constants.  

Using properties of triangle in ∆ORP, 
𝑂𝑃

sin𝛼
=

𝑅𝑃

sin𝜃
=

𝑂𝑅

sin𝛽
⇒

𝑎

sin𝛼
=

𝑟

sin𝜃
=

𝑅

sin(𝜋−(𝛼+𝜃))
⇒

𝑎

sin𝛼
=

𝑟

sin𝜃
=

𝑅

sin(𝛼+𝜃)
. 

Accordingly, 𝑟 = 𝑎
sin𝜃

sin𝛼
 …(3) and sin𝛼 =

𝑎

𝑅
sin(𝛼 + 𝜃)….(4). 

It, further, solves into 

sin𝛼 =
𝑎

𝑅
(sin 𝛼 cos 𝜃 + cos𝛼 sin𝜃) ⇒ (1 −

𝑎

𝑅
cos𝜃) sin𝛼 =

𝑎

𝑅
sin 𝜃 cos𝛼.  

 

 

 

 

 

 

 

Fig. 1 



Introducing a normalization parameter 𝑡 =
𝑎

𝑅
 which defines relative position of point P in the plane of loop w.r.t. its center 

O we have - 

⇒ (1 − 𝑡 cos 𝜃) sin 𝛼 = 𝑡 sin 𝜃 . cos 𝛼 ⇒ (1 − 𝑡 cos 𝜃) sin 𝛼 = 𝑡 sin 𝜃 √1 − sin2 𝛼 

(1 + 𝑡2 cos2 𝜃 − 2𝑡 cos𝜃) sin2 𝛼 = 𝑡2 sin2 𝜃 (1 − sin2 𝛼) 

⇒ (1 + 𝑡2(cos2 𝜃 + sin2 𝜃) − 2𝑡 cos 𝜃) sin2 𝛼 = 𝑡2 sin2 𝜃 

⇒ sin2 𝛼 =
𝑡2 sin2 𝜃

(1 + 𝑡2 − 2𝑡 cos 𝜃)
 

⇒ sin𝛼 =
𝑡 sin𝜃

√(1+𝑡2−2𝑡 cos𝜃)
 …(5) 

⇒ cos2 𝛼 = 1 − sin2 𝛼 = 1 −
𝑡2 sin2 𝜃

(1 + 𝑡2 − 2𝑡 cos𝜃)
=

(1 + 𝑡2 − 2𝑡 cos𝜃) − 𝑡2 sin2 𝜃

(1 + 𝑡2 − 2𝑡 cos𝜃)
 

⇒ cos2 𝛼 =
(1 + 𝑡2(1 − sin2 𝜃) − 2𝑡 cos𝜃)

(1 + 𝑡2 − 2𝑡 cos𝜃)
=

(1 + 𝑡2 cos2 𝜃 − 2𝑡 cos 𝜃)

(1 + 𝑡2 − 2𝑡 cos 𝜃)
=

(1 − 𝑡 cos 𝜃)2

(1 + 𝑡2 − 2𝑡 cos 𝜃)
 

⇒ cos𝛼 =
1−𝑡 cos𝜃

√(1+𝑡2−2𝑡 cos𝜃)
…(6) 

Combining (3) [𝑟 = 𝑎
sin𝜃

sin𝛼
] and (5) [sin𝛼 =

𝑡 sin𝜃

√(1+𝑡2−2𝑡 cos𝜃)
], we have – 

𝑟 = 𝑎
sin𝜃
𝑡 sin𝜃

√(1+𝑡2−2𝑡 cos𝜃)

⇒ 𝑟 = 𝑅√(1 + 𝑡2 − 2𝑡 cos 𝜃) ⇒ 𝑟2 = 𝑅2(1 + 𝑡2 − 2𝑡 cos 𝜃)…(7) 

Combining (2),(6) and (7) we get – 

∆𝐵𝑡 = ((
𝜇0𝐼𝑅

4𝜋
)

cos𝛼

𝑟2 ∆𝜃) = (
𝜇0𝐼𝑅

4𝜋
)

1−𝑡 cos𝜃

√(1+𝑡2−2𝑡 cos𝜃)

𝑅2(1+𝑡2−2𝑡 cos𝜃)
∆𝜃 ⇒ ∆𝐵𝑡 = (

𝜇0𝐼

4𝜋𝑅
)

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)
3
2

∆𝜃…(8) 

Therefore, net magnetic field at P is – 

𝐵𝑡 = ∫ (
𝜇0𝐼

4𝜋𝑅
)

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)
3
2

∆𝜃
2𝜋

0
⇒ 𝐵𝑡 = (

𝜇0𝐼

4𝜋𝑅
) ∫

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)
3
2

𝑑𝜃
2𝜋

0
. 

Taking the limits outside the integration, for convenience of substitution we get – 

𝐵𝑡 = (
𝜇0𝐼

4𝜋𝑅
) [∫

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)
3
2

𝑑𝜃]
0

2𝜋

 …(9) 

The integration in (9), 𝐹(𝑡) = [∫
(1−𝑡 cos𝜃)

(1+𝑡2−2𝑡 cos𝜃)
3
2

𝑑𝜃]
0

2𝜋

 …(10), at the center of the loop O where  𝑎 = 0 ⇒ 𝑡 =
𝑎

𝑅
= 0 it 

reduces to the expression in (10) reduces to 𝐹(0) = [∫𝑑𝜃]0
2𝜋 ⇒  𝐹(0) = 2𝜋 …(11). Thus, magnetic field at O, combining 

(9) and (11)  is 𝐵𝑂 = (
𝜇0𝐼

4𝜋𝑅
) 2𝜋 ⇒ 𝐵𝑂 =

𝜇0𝐼

2𝑅
…(12), is in conformity with the known value of 𝐵 at the center of a current 

carrying loop. 



Likewise, magnetic field at 𝑎 = 𝑅− ⇒ 𝑡 =
𝑅−ℎ

𝑅
|
ℎ→0

= 1 −
ℎ

𝑅
|
ℎ→0

, we have – 

𝐹(1) = [∫
(1 − cos 𝜃)

(1 + 1 − 2 cos 𝜃)
3

2

𝑑𝜃]

0

2𝜋

=
1

2√2
[∫

1

√1 − cos 𝜃
𝑑𝜃]

0

2𝜋

=
1

2√2
[
 
 
 

∫
1

√2 sin2 𝜃

2

𝑑𝜃

]
 
 
 

0

2𝜋

⇒ 𝐹(1) =
1

4
[∫

1

sin
𝜃

2

𝑑𝜃]

0

2𝜋

 

Taking 
𝜃

2
= 𝑢 ⇒ 𝑑𝜃 = 2𝑑𝑢 it leads to- 

𝐹(1) =
1

4
[∫ cosec 𝑢 (2𝑑𝑢)]0

2𝜋 =
1

2
[∫ cosec 𝑢 𝑑𝑢]0

2𝜋 = (−)
1

2
[cosec 𝑢 cot 𝑢]0

2𝜋…(13) 

Making reverse substitution (13) we have - 

𝐹(1) = (−)
1

2
[cosec

𝜃

2
cot

𝜃

2
]
0

2𝜋
=

1

2
[cosec0 cot 0 − cosec 𝜋 cot 𝜋] =

1

2
[(∞) × (∞) − (∞) × (∞)]…(14) 

Thus, from (14), 𝐹(1) is indeterminate. 

Therefore, instead of calculating of determining pattern of 𝐹(𝑡), relative flux density 𝐵𝑎 =
𝐵𝑡

𝐵0
 is, combining (9) and (12) 

is – 

𝐵𝑟𝑡 =

(
𝜇0𝐼

4𝜋𝑅
)[∫

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)

3
2

𝑑𝜃]

0

2𝜋

𝜇0𝐼

2𝑅

=
1

2𝜋
[∫

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)
3
2

𝑑𝜃]
0

2𝜋

…(15). 

Combining (10) and (15), it leads to 𝐵𝑟𝑡 =
1

2𝜋
× 𝐹(𝑡)…(16) 

The integration 𝐹(𝑡) in (10), a part of (16), is not solvable by normal methods and pattern of flux density distribution has 

been determined using Trapezoidal Rule numerical method, using MS-Excel, in an interval 𝑡 = [0,0.99). Results are plotted 

in Fig. 2 using MyCurveFit, Online Curve Fitting software (https://mycurvefit.com/). As 𝑎 → 𝑅 ⇒ 𝑡 → 1 the integration 

𝐹(1) tends to be indeterminate and hence not plotted. Thus distribution of magnetic field over the cross-section of the loop 

, which is denser near the perimeter of the loop and rarer at the center, in the form of circular contours of uniform magnetic 

fields, is shown in Fig. 3. 

 

 

 

 

 

 

 

Data Calculated Numerically:  Data used in Fig. 2, is as under - 

 

Variation of Flux Density with Normalization Parameter 

(t) 

Fig. 2 
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Conclusion: Non-uniform magnetic field in the cross-section of the loop will impact philosophy of design of transformer 

core which is currently using uniform magnetic material in transformer core. Thus, this paper opens an opportunity to 

review overall design of transformer specially those used in instrumentation and control where errors due to core losses 

and magnetizing current are significant at macro level. At micro level it calls for review of magnetic forces that would 

influence configuration of orbital motion of electrons in atoms. Thus, review of overall spectrum of physics. 

—00— 

Appendix-IV 

 

Magnetic Field at Any Point Near a Large Metal Sheet Having Uniform Electric Current 

A large metal carry surface current such that it can be approximated thin strips 𝑑𝑥 of 

width  as given in the figure carrying current 𝑑𝑖 = 𝐾𝑑𝑥…(1),as considered in ths 

formulation. Effect of magnetic of the metal sheet at any point of the points P, Q and R 

can be determined by considering lay of the wires along long straight 

wire spread across the width of the sheet, as shown in the figure. 

Using (1) net current in the strip of width 2𝑥 is as under – 

𝑖 = ∫𝑑𝑖 = ∫ 𝐾𝑑𝑥
2𝑥

0
⇒ 𝑖 = 2𝐾𝑥…(2) 

Since sheet is large, therefore, for determination of magnetic field at any point we can safely 

model two elemental wires of the sheet symmetrically placed on both sides of the point. 

Accordingly, two hypothetical points A and B are taken for determination of magnetic field by 

elemental wires C and D carrying current, in a direction coming out of the surface of the figure. 

Applying Biot-Savart’s Law for magnetic at a point due to a long straight wire 𝐵 =
𝜇0𝐼

2𝜋𝑟
…(3). 

Accordingly, at point A magnetic field due to current in C is 𝑑𝐵𝐶𝐴 =
𝜇0

2𝜋√𝑥2+𝑎2
𝑑𝑖, along perpendicular to CA and likewise 

due to current in D is 𝑑𝐵𝐷𝐴 =
𝜇0

2𝜋√𝑥2+𝑎2
𝑑𝑖. along perpendicular to DA.  

Thus,𝑑𝐵A = 𝑑𝐵𝐶𝐴 cos (
𝜋

2
− 𝛼) + 𝑑𝐵𝐶𝐴 cos (

𝜋

2
− 𝛼) 

                 ⇒ 𝑑𝐵𝐶𝐴 sin 𝛼 +  d𝐵𝐶𝐴 sin 𝛼. 

Using geometry shown I the figure and (1),  𝑑𝐵A = 2 ×
𝜇0

2𝜋√𝑥2+𝑎2
×

𝑎

√𝑥2+𝑎2
𝑑𝑖 ⇒ 𝑑𝐵A =

𝜇0𝑎

𝜋(𝑥2+𝑎2)
𝐾𝑑𝑥…(4)     

Applying results in (4), of this model, to the given problem, we have 𝑑𝐵A =
𝜇0𝐾𝑎

𝜋(𝑥2+𝑎2)
𝑑𝑥…(5). Therefore, 𝐵A =

∫
𝜇0𝐾𝑎

𝜋(𝑥2+𝑎2)

𝑥

𝑜
𝑑𝑥 ⇒ 𝐵A =

𝜇0𝐾𝑎

𝜋
∫

𝑑𝑥

𝑥2+𝑎2

𝑥

𝑜
. Geometrically tan𝛼 =

𝑎

𝑥
⇒ 𝑥 = 𝑎 cot 𝛼 ⇒ 𝑑𝑥 = −𝑎 cosec2 𝛼 𝑑𝛼. It is seen in the 

figure that for a large sheet as 𝑥 → 0 ⇒ 𝛼 →
𝜋

2
, and as 𝑥 → ∞ ⇒ 𝛼 → 0. Accordingly, using the limits, 𝐵A =

𝜇0𝐾𝑎

𝜋
[∫

1

𝑎2cosec
2
𝛼
𝑎cosec2 𝛼𝑑𝛼]

𝜋

2

0

⇒ 𝐵A =
𝜇0𝐾

𝜋
[∫ 𝑑𝛼]𝜋

2

0 ⇒ 𝐵𝐴 =
𝜇0𝐾

𝜋
[𝛼]𝜋

2

𝑜. This reduces to  𝐵A =
𝜇0𝐾

𝜋
[0 −

𝜋

2
]. It leads to 𝐵A =

𝒕 =
𝒂

𝑹
 

𝑩𝒓𝒕 𝒕 =
𝒂

𝑹
 

𝑩𝒓𝒕 𝒕 =
𝒂

𝑹
 

𝑩𝒓𝒕 

0 1 0.4 1.141324 0.8 2.257082 

0.1 1.006735 0.5 1.245621 0.9 3.925924 

0.2 1.031171 0.6 1.410594 0.99 36.10549 

0.3 1.073742 0.7 1.692237 1 Indeterminate 



−
𝜇0𝐾

2
…(6). Likewise, magnetic field at point B would be  𝐵B =

𝜇0𝐾

2
…(7), but it is in a direction opposite to 𝐵A and can be verified 

with Ampere’s Right Hand Thumb Rule. 

Important observation: Results at (6) to (9) lead to a conclusion that magnitude of magnetic field around a large sheet 

carrying current is proportional to current density and is independent of distance from the sheet. Directions of the magnetic 

fields can be verified with Ampere’s Right Hand Thumb Rule. 

This analysis can be simplified using Ampere’s Circuital Law ∮𝐵. 𝑑𝑙 = 𝜇0𝐼 to determine magnetic field at any point near 

a large sheet of width 𝑥, current is 𝐼 = 𝑘𝑥 and length of the path surrounding a large sheet is 𝑙 = 2𝑥. Taking 𝐵⃗⃗ along 𝑑𝑙. 

As per the law it leads to 𝐵 × 2𝑥 = 𝜇0 × 𝐾𝑋 ⇒ 𝐵 =
𝜇0𝐾

2
. In the problem sheet is taken to be large and hence end effect on 

path length can be ignored. 
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Important Note: You may encounter need of clarification on contents and analysis or an inadvertent 

typographical error. We would gratefully welcome your prompt feedback on mail ID: 

subhashjoshi2107@gmail.com. If not inconvenient, please identify yourself to help us reciprocate you suitably. 
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