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Electromagnetism: Magnetic Effect of Electric Current  (Set-3) 

Illustrations Only 

 

I-01 Given system is shown in figure. Conductor carrying current I is oriented 

along 𝑘̂. A particle P carrying charge 𝑞, at distance 𝑟 from the conductor 

is moving with a velocity 𝑣⃗ at an angle 𝜃 w.r.t. to conductor, as shown in 

the figure. Magnetic field, as per Biot-Savart’s Law, at the location of 

charge. is 𝐵⃗⃗ =
𝜇0𝐼

2𝜋𝑟
(−𝑖)̂…(1).  

Therefore, magnetic force experienced by the charge, as per Lorentz’s 

Force Law would be 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹 = 𝑞𝑣𝐵 sin 𝛼…(2). Here, is angle 

between magnetic field and velocity of the particle. It can be visualized  

from the figure that 𝛼 = 900 ⇒  sin 900 = 1…(3).  

Combining (1), (2) and (3), force 𝐹 = 𝑞𝑣 ×
𝜇0𝐼

2𝜋𝑟
…(4). None of the 

parameters in (4) are zero and hence the charged particle would experience a force. 

The problem further states that the particle is seen from a frame of reference which is moving with velocity 𝑣 

in the same direction as that of conductor i.e. velocity of the observer is also 𝑣⃗0 = 𝑣⃗. It implies that relative 

velocity of the observer w.r.t. particle is 𝑣𝑟 = 𝑣⃗0 − 𝑣⃗ ⇒ 𝑣𝑟 = 𝑣⃗ − 𝑣⃗ = 0.  

Now the analysis of the two parts is as under – 

Part (a): Force experienced by the particle in (2) depends upon its velocity at the point w.r,t. magnetic field 

at the point. It has nothing to do with velocity of the observer. Since both velocity and magnetic 

fields are non-zero and hence force would exist. Hence, answer to part(a) is NO. 

Part (b): Magnetic field at any point around a current carrying conductor is regulated by (1). It has nothing 

to do with velocity of either of particle or the observer. Moreover, none of the parameters in (1) are 

zero and magnetic field would exist. Hence, answer to part(a) is Yes. 

Thus, answers are (a) No    (b) Yes.   

I-02 As per Lorentz’s Force Law force experienced by a charged particle is  𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣𝐵 sin 𝛼 𝑛̂…(1). In 

this variables that affects the force are – (a) 𝑞 is the charge of the particle, which is non-zero as per statement 

of the problem, (b) 𝑣 is the relative velocity of particle w.r.t. magnetic field in which it is placed, (c) 𝐵 is 

intensity of magnetic field in which it is placed, this is non-zero by the statement of the problem, and (d) 𝛼 is 

the angle of velocity vector𝐵⃗⃗  w.r.t to magnetic vector𝑣⃗. The direction of force is 𝑛̂ which perpendicular to 

vectors  𝑣⃗ and 𝐵⃗⃗ . 

Thus for acceleration of the particle, as per Newton’s Second Law of Motion 𝑎⃗ =
𝐹⃗

𝑚
force must be zero. This 

is possible only if – (i) charge is in state of rest 𝑣⃗ = 0, (ii) sin 𝛼 = 0 ⇒ 𝛼 ∈ {0, 𝜋} i.e. if 𝑣⃗ ≠ 0 the velocity of 

the particle is either in direction of magnetic field or opposite to it, or (iii) both 𝑣⃗ = 0 ∩ sin 𝛼 = 0. Hence 

answer to first part is Yes. 

If conditions of acceleration (i) or (ii) discussed are False, then particle can be 

accelerated. If particle is accelerated then direction of force is along 𝑛̂ and hence it will 

act like a centripetal force. Thereby, particle will perform uniform circular motion of 

radius 𝐹 =
𝑚𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑣2

𝐹
, without change of velocity, as shown in the figure. Hence, 

answer to the second part is No. 



Thus answers are Yes, No. 

I-03 Current loop is a closed path in which some current I is flowing. The loop when placed in magnetic field it 

would experience force as per Lorentz’s Force Law   𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝐼𝑙 × 𝐵⃗⃗ ⇒  𝐹⃗ = 𝐼𝑙𝐵 sin 𝛼 𝑛̂…(1). In 

this variables that affects the force are – (a) 𝐼 is the current in the loop which is non-zero as per statement of 

the problem, (b) 𝑙 is the length of the loop; it will have to considered in segments since loop is closed, (c) 𝐵 

is intensity of magnetic field in which it is placed, this is non-zero by the statement of the problem, and (d) 𝛼 

is the angle of magnetic field vector 𝐵⃗⃗  w.r.t to length vector 𝑙. The direction of force is 𝑛̂ which perpendicular 

to vectors  𝑙 and 𝐵⃗⃗ . 

For force experienced by loop to be zero, it possible only if – (i) current in the loop is 𝐼 ≠
0 of rest 𝑣⃗ = 0, (ii) magnetic field 𝐵 ≠ 0 (iii) length of any segment 𝑙 ≠ 0, (iv) coil is so 

placed that for every elemental length sin 𝛼 = 0 ⇒ 𝛼 ∈ {0, 𝜋} for the segment; this is not 

possible even if loop is (a) either placed such that its area vector is perpendicular to 

magnetic field or (b) along the magnetic field, and (v ) net force on the loop is zero.  

For simplicity a square loop in two extreme positions as brought out at (iv) is being 

discussed. 

In case of orientation at (a), shown in figure, each of the side is 

experiencing equal force, yet forces in left side  𝐹𝐿  and right side 𝐹𝑅 of the loop are opposite. 

Likewise forces on top side  𝐹𝑇 and bottom side 𝐹𝐵 are opposite. Thus net force on the loop 

is zero. 

Now analyzing forces on sides in orientation (b), forces experienced by top side 𝐹𝑇  and 

bottom side 𝐹𝐵 are equal and opposite. Thus, these two sides contribute to each side are 

equal. However, forces on left side 𝐹𝐿 and right side 𝐹𝑅, both are equal to zero. Same applies 

to loop placed in any orientation.  

Thus force experienced by a current carrying loop placed ina magnetic field is Zero. Hence, answer is Yes. 

I-04 Free electrons in a conductor, vis-a-vs normal conducting wire perform thermal motion, defined as Brownian 

Motion, such that net number of electrons passing through across-section is zero. Thus current through a cross-

section wire is 𝐼 = 0…(1) 

Yet, the only charge carrier capable of causing current are electrons. Therefore, as per Lorentz’s Force law 

each electron  having charge 𝑞in motion moving with a velocity 𝑣⃗  would experience a magnetic force 𝐹⃗ =

𝑞𝑣⃗ × 𝐵⃗⃗ …(2), when placed in magnetic field 𝐵⃗⃗. Hence, answer to the first part is Yes. 

But, as regards force experienced by the conducting wire, extension of the Lorentz’s Force Law would be 

applicable. Accordingly, 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝐼𝑙 × 𝐵⃗⃗…(3). Combining (1) and (3), the force experience by the 

conducting wire would be zero. Thus, answer to the second part is No. 

Thus answers are (a) Yes and (b) No. 

I-05 In a cubical region of side 𝑎, largest circle that can be drawn is of radius 
𝑎

2
. A particle carrying charge 𝑞 moving 

with a velocity 𝑣⃗ in magnetic field 𝐵⃗⃗ experiences a force 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝐼𝑙 × 𝐵⃗⃗ ⇒  𝐹⃗ = 𝐼𝑙𝐵 sin 𝛼 𝑛̂ 

…(1). Here, and 𝛼 is the angle of magnetic field vector  𝐵⃗⃗ w.r.t. length vector 𝑙. The direction of force is 𝑛̂ 

which perpendicular to vectors 𝑣⃗ and 𝐵⃗⃗. This force acts as centripetal force, a necessary condition for circular 

motion of radius 𝑟. Combining such that 𝐹 =
𝑚𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑣2

𝑞𝑣 sin 𝛼
…(2). In case 𝑟 ≤  

𝑎

2
 the charged particle will 

continue describe circular motion in the cubical region. Thus, answer is Yes, if radius of circle is less than 

or equal to half of the side of the cube. 



I-06 Given that electron beam having charge of each electron 𝑞 = (−)𝑒 …(1), is 

projected along X-axis with some velocity 𝑣⃗ = 𝑣𝑖̂…(2). Deflection of the beam 

is given to be along Y axis i.e. in direction 𝑗̂. Such a deflection is possible only 

when the electron beam experiences a force 𝐹⃗ = 𝐹𝑗 ̂i.e. along 𝑗̂.  

This system can be analyzed using Lorentz’s Force Law 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(3). 

Combining (1) and (2) in (3) we have 𝐹𝑗̂ = (−𝑒)(𝑣𝑖̂) × 𝐵⃗⃗…(4). 

We know that vector algebra does not permit division. However, using 

Flemings’s Left Hand Rule (FLHR) as shown in the figure, a 

simple way of analysis derived from Lorentz’s Force Law, (4) 

has to be satisfied. Accordingly, figure of FLHR is oriented to 

align with the given directions of current (it is opposite to 

direction of electron beam since electrons are (-)ve charge carriers) and deflections. It leads 

to the conclusion that magnetic field is along Z-axis i.e. in direction 𝑘̂. Thus, magnetic field 

is along  𝒌̂ answer to part (a). This implies that magnetic field is parallel to Z-axis, is 

answer to part (b).  

Thus answers are (a) Magnetic field along 𝒌̂,  (b) Magnetic field is parallel to Z-axis 

I-07 Rotation of a system is effect of a torque 𝛤⃗ = 𝑟 × 𝐹⃗ ⇒ 𝛤⃗ = 𝑟𝐹 sin 𝛼 𝑛̂…(1). Here, 𝑟 is the distance of point 

of application of force 𝐹 from the point of rotation, 𝛼 angle of vector 𝐹⃗ w.r.t. to vector 𝑟. 

Therefore, it is possible for a current loop to stay without rotating only if the loop is just placed without a 

point of rotation fixed. But, in electrical devices current loops are mounted on a shaft which serves as point 

of rotation of loop. And sides of current loop, which may experience force, would experience force when 

placed in magnetic field. Thus, it tends to satisfy requirements of (1). Hence, answer for first part is Yes.    

In respect of orientation of loop in magnetic field coil, for convenience, is 

considered to be rectangular. Two extreme orientations are shown in figure.  

In first orientation side ab of the rectangular loop is along the magnetic field and 

it is carrying current I form b to a. Thus, as per 

Flemings Left Hand Rule (FLHR) the side of loop 

in which current is entering at end ‘a’ would 

experience a downward force F as per Lorentz’s 

Force Law (LFL). Likewise, side of the loop in which current is coming out at 

end ‘b’ would experience an upward force F as per LFL. This in this orientation 

when area vector of the loop is perpendicular to the magnetic fields. The loop 

would experience a torque. 

But, in orientation when area vector is parallel to the magnetic field though sides 

of coil at ‘a’ and ‘b’ would experience force as per LFL, but force distance vector being collinear 𝛼 = 0 ⇒
sin 𝛼 = 0, torque as per (1) would be zero. Thus, answer for second part is when area vector of loop is 

parallel or anti-parallel  to magnetic field. 

I-08 Despite net charge on a current carrying wire being zero, cloud of free electron in wire experience a 

unidirectional drift. This drift is responsible for current in the wire. When current carrying wire is placed in 

magnetic field, as per Bio-Savart’s Law it produces a magnetic field around it. Interaction of these two 

magnetic field produces reorientation of magnetic field causing a force F on conductor as per Lorentz’s Force 

Law expressed as 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝐼𝑙 × 𝐵⃗⃗ ⇒  𝐹⃗ = 𝐼𝑙𝐵 sin 𝛼 𝑛̂. Here, 𝐼 is the current through wire, 𝑙 is 

length of wire, 𝐵 is magnetic field in which wire is placed, and 𝛼 is the angle of magnetic field vector  𝐵⃗⃗ w.r.t. 

length vector 𝑙. The three parameters I, l, B are non- zero as per statement of problem. Therefore, if 𝛼 ≠ 0, 

i.e. wire is not parallel to magnetic field then it will experience force. 



I-09 Despite net charge on a current carrying wire being zero, cloud of free electron in wire experience a 

unidirectional drift. This drift is responsible for current in the wire. When current carrying wire is placed in 

magnetic field, as per Bio-Savart’s Law it produces a magnetic field around it. Interaction of these two 

magnetic field produces reorientation of magnetic field causing a force F on conductor as per Lorentz’s Force 

Law expressed as 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝐼𝑙 × 𝐵⃗⃗ ⇒  𝐹⃗ = 𝐼𝑙𝐵 sin 𝛼 𝑛̂. Here, 𝐼 is the current through wire, 𝑙 is 

length of wire, 𝐵 is magnetic field in which wire is placed, and 𝛼 is the angle of magnetic field vector  𝐵⃗⃗ w.r.t. 

length vector 𝑙. The three parameters I, l, B are non- zero as per statement of problem. Therefore, if 𝛼 ≠ 0, 

i.e. wire is not parallel to magnetic field then it will experience force. 

Thus, in the given system for force to be zero there are two possibilities – 

(i) Angle 𝛼 = 0 ⇒ sin 𝛼 = 0 between area vector 𝐴 and magnetic field vector 

𝐵⃗⃗. This case is shown in figure where ‘a’ of the loop through which current 

is entering is below and ‘b’ of loop through which current is leaving is 

above. This is the natural position of least potential energy 𝑈𝑖 = 0 of the 

current carrying loop, a state of stable equilibrium. 

(ii) The angle  𝛼 = 𝜋 ⇒ sin 𝛼 = 0. his case is 

shown in figure where ‘a’ of the loop through which current is entering is above 

and ‘b’ of loop through which current is leaving is below. Position of current 

carrying loop in this case requires work to be done by external force to rotate 

coil for position in case (i). Thus potential energy of the current carrying loop 

in this case 𝑈𝑖 > 0. Hence, current carrying loop in this case despite forces on 

the loop being in equilibrium, the loop is in instable equilibrium. 

Thus, answer is 𝜶 = 𝟎 

N.B.: Area vector A⃗⃗⃗ is of magnitude equal to the area A under consideration and in a direction such that 

direction of perimeter is anti-clockwise direction. This is consistent with angles measured (+)ve in 

anticlockwise direction 

I-10 Comparison of two units of different physical quantities require to convert them into to their units. This 

exercise is similar to that determining dimensions of any physical quantities into fundamental dimensions. 

Same process will be followed for units weber and volt-second. 

As per Lorentz Force Law force 𝐹 experienced by a charge 𝑞 moving with a velocity 𝑣 in magnetic field 𝐵 is 

𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐵 =
𝐹

𝑞𝑣
…(1). 

Unit of force is 𝑁 = 𝑘𝑔. 𝑚. 𝑠−2…(2), unit of charge is 𝑞 = 𝐶…(3), unit of velocity is 𝑣 = 𝑚. 𝑠−1…(4). 

Thus, combining (2), (3) and (4) in (1) we have unit of flux density is 𝐵 =
𝑘𝑔.𝑚.𝑠−2

(𝐶)(𝑚.𝑠−1)
⇒ 𝐵 = 𝑘𝑔. 𝐶−1. 𝑠−1…(5) 

Further, flux density 𝐵 =
𝑊𝑏

𝑚2 ⇒ 𝑊𝑏 = 𝐵. 𝑚2.…(6). Combining (5) and (6) 𝑊𝑏 = 𝑘𝑔. 𝑚2. 𝑠−1. 𝐶−1…(7). 

Now, let us derive unit Volt-s in basic units. Volt is uit of electric potential at a point is equal to amount of 

work done in moving a unit charge from infinity to that point. Thus, 𝑉 =
𝐽𝑜𝑢𝑙𝑒

𝐶𝑜𝑢𝑙𝑜𝑚𝑏
⇒ 𝑉 =

𝑁.𝑚

𝐶
 …(8). 

Combining (2) and (8), we have 𝑉 =
𝑘𝑔.𝑚.𝑠−2.𝑚

𝐶
⇒ 𝑉 = 𝑘𝑔. 𝑚2. 𝑠−2. 𝐶−1…(9). 

Therefore, using (9) unit of 𝑉𝑜𝑙𝑡. 𝑆𝑒𝑐 = (𝑘𝑔. 𝑚2. 𝑠−2. 𝐶−1)𝑠 ⇒ 𝑉𝑜𝑙𝑡. 𝑆𝑒𝑐 = 𝑘𝑔. 𝑚2. 𝑠−1. 𝐶−1…(10). 

Thus, from (7) and (10) it is verified that unit of Weber and Volt-Sec are same. 

I-11 Given system with directional orientations as stipulated in the problem is shown in the figure. The positively 

charged particle is projected towards east and hence direction of current would also be east.  

Further, the particle is stated to be deflected towards north.  Deflection is in direction of force and hence force 

F acting on the particle is along north direction. 



Force experienced by a chargedparticle in motion in magnetic field is defined by 

Lorentz’s Force Law expresed as 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(1). These vectors are simplied for 

use in Flamming’s Left Hand Rule (FLHR). Accordingly,  figure shows FLHR 

aligned to directions of current and deflections.  

Thus as per figure directin of magnetic field is away from the observer, or in parlance 

of the given directions downward. Hence, answer is option (d). 

I-12 Given system of a charged particle in horizontal circular motion on a frictionless table is shown in the figure. 

The direction of rotation is initially taken to be anticlockwise. The string attached to the center C of the circle 

and particle P will exert a centripetal force 𝐹1 on the particle. As a result of it, the particle will experience an 

equal opposite centrifugal force 𝐹2. Thus, the particle, in a state of equilibrium would continue to perform 

uniform circular motion.  

Next, magnetic field 𝐵 in vertical direction is switched ON as shown in adjoining figure. The moving charged 

particle in accordance with Lorentz’s Force Law (LFL), expressed as 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗, would experience a force.  

Simplistic representation of directions of vectors is given by 

Flamming’s Left Hand Rule (FLHR). Accordingly,  figure shows 

FLHR aligned to directions of current and magnetic field, as given.  

Accordingly, additional force F experienced by the charged 

particle will be in the direction of 𝐹2. As a result net centripetal 

force would be  𝐹2′ = 𝐹2 + 𝐹. As a result it will tend to increase 

radius of the circle. String, though not specified is considered non-

strechable, would experience tension 𝐹1
′ = 𝐹2

′ ⇒ 𝐹1
′ > 𝐹1. 

Thus, tension in the string would increase in this case of uniform 

circular motion where direction of rotation is anticlockwise. 

However, if particle is performing clockwise motion, the direction of force would reverse. Therefore, 

centripetal force would become𝐹2
′ = 𝐹2 − 𝐹. In state of equilibrium for uniform circular motion  𝐹1

′ = 𝐹2
′ ⇒

𝐹1
′ < 𝐹1; tension in the string would decrease in this case of uniform circular motion where direction of 

rotation is clockwise. 

Thus, answer is tension in string may increase or decrease as provided in option (d) 

I-13 Force 𝐹 experienced by charged particle with a velocity 𝑣, perpendicular to magnetic field B, as per Lorentz’s 

Force Law is 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹 = 𝑞𝑣𝐵 sin 𝜃…(1), here 𝜃 is the angle of velocity vector 𝑣⃗ relative to magnetic 

field vector 𝐵⃗⃗. Further, and 𝜃 is the angle of magnetic field vector wire length  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗. it is 

given that the vectors  𝑣⃗ and 𝐵⃗⃗ are perpendicular to each other hence 𝜃 =
𝜋

2
⇒ sin

𝜋

2
= 1…(2). Thus, combing 

(1) and (2), and that velocity 𝑣 and magnetic field B are same for all the particles,  we have 𝐹 ∝ 𝑞. 

Taking absolute magnitude of charge of electron to be 𝑒 for the given particles – 

(a) Electron has charge 𝑞𝐸 = −𝑒 ⇒ 𝐹𝐸 ∝ −𝑒. 

(b) Proton has charge 𝑞𝑃 = 𝑒 ⇒ 𝐹𝐸 ∝ 𝑒 

(c) He+ ion has charge 𝑞𝐻 = 𝑒 ⇒ 𝐹𝐸 ∝ 𝑒 

(d) Li++ ion has charge 𝑞𝐿 = 2𝑒 ⇒ 𝐹𝐸 ∝ 2𝑒 

It is seen that – 

(i) Direction of experienced by electron is opposite to that other three given particles, 

(ii) Magnitude of forces experienced by electron, proton and Helium ions are equal. But force experienced 

by Li++ ion is twice of the magnitude of other three particles. 

(iii) Hence, maximum magnitude of magnetic force is experienced by Li++ ion, matches with the option (d). 

Thus, answer is option (d). 

I-14 Force 𝐹 experienced by charged particle with a velocity 𝑣, perpendicular to magnetic field B, as per Lorentz’s 

Force Law is 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹 = 𝑞𝑣𝐵 sin 𝜃…(1), here 𝜃 is the angle of velocity vector 𝑣⃗ relative to magnetic 



field vector 𝐵⃗⃗. Further it is given that the vectors  𝑣⃗ and 𝐵⃗⃗ are perpendicular to each other hence 𝜃 =
𝜋

2
⇒

sin
𝜋

2
= 1…(2). Thus, combing (1) and (2), and that velocity 𝑣 and magnetic field B are same for all the 

particles,  magnetic force experienced by the charged particle is 𝐹𝑚 = 𝐹 = 𝑞𝑣𝐵…(3) 

Taking absolute magnitude of charge of electron to be 𝑒 for the given particles – 

(a) Electron has charge 𝑞𝐸 = −𝑒 ⇒ 𝐹𝐸 ∝ −𝑒. 

(b) Proton has charge 𝑞𝑃 = 𝑒 ⇒ 𝐹𝐸 ∝ 𝑒 

(c) He+ ion has charge 𝑞𝐻 = 𝑒 ⇒ 𝐹𝐸 ∝ 𝑒 

(d) Li+ ion has charge 𝑞𝐿 = 𝑒 ⇒ 𝐹𝐸 ∝ 𝑒 

In the given situation charged particle will describe circular motion or radius 𝑟 that centripetal force 𝐹𝐶 =
𝑚𝑣2

𝑟
 

…(4) is experienced by each particle is equal to magnetic force i.e. 𝐹𝐶 = 𝐹𝑚…(5). 

Combining (3), (4) and (5) we have 𝑞𝑣𝐵 =
𝑚𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑣

𝑞𝐵
. Given that velocity 𝑣 and magnetic field 𝐵 are 

same for all the four particles and charge of each particle as discussed above is also same, we have 𝑟 ∝ 𝑚…(6). 

We know that mass of electron is minimum among the given four particles. Hence, radius of circle described 

electron is minimum, as given option (a). 

Thus, answer is option (a). 

I-15 Force 𝐹 experienced by charged particle with a velocity 𝑣, perpendicular to magnetic field B, as per Lorentz’s 

Force Law is 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹 = 𝑞𝑣𝐵 sin 𝜃…(1), here 𝜃 is the angle of magnetic field vector  𝐵⃗⃗ w.r.t. length 

vector 𝑣⃗. Further, it is given that the vectors  𝑣⃗ and 𝐵⃗⃗ are perpendicular to each other hence 𝜃 =
𝜋

2
⇒ sin

𝜋

2
=

1…(2). Thus, combing (1) and (2), and that velocity 𝑣 and magnetic field B are same for all the particles,  

magnetic force experienced by the charged particle is 𝐹𝑚 = 𝐹 = 𝑞𝑣𝐵…(3) 

Taking absolute magnitude of charge of electron to be 𝑒 for the given particles – 

(a) Electron has charge 𝑞𝐸 = −𝑒 ⇒ 𝐹𝐸 ∝ −𝑒. 

(b) Proton has charge 𝑞𝑃 = 𝑒 ⇒ 𝐹𝐸 ∝ 𝑒 

(c) He+ ion has charge 𝑞𝐻 = 𝑒 ⇒ 𝐹𝐸 ∝ 𝑒 

(d) Li+ ion has charge 𝑞𝐿 = 𝑒 ⇒ 𝐹𝐸 ∝ 𝑒 

In the given situation charged particle will describe circular motion or radius 𝑟 that centripetal force 𝐹𝐶 =
𝑚𝑣2

𝑟
 

…(4) is experienced by each particle is equal to magnetic force i.e. 𝐹𝐶 = 𝐹𝑚…(5). 

Combining (3), (4) and (5) we have 𝑞𝑣𝐵 =
𝑚𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑣

𝑞𝐵
. Given that velocity 𝑣 and magnetic field 𝐵 are 

same for all the four particles and charge of each particle as discussed above is also same, we have 𝑟 ∝ 𝑚…(6). 

It is given that velocity 𝑣 of projection of each of the charged particle is same and hence frequency of 

revolutions is nothing but number of revolutions-per-second 𝑓 = 𝑛 =
𝑣

2𝜋𝑟
⇒ 𝑓 ∝

1

𝑟
…(7). 

We know that mass of electron is minimum among the given four particles. Whereas mass of Li+ ion is 

maximum. Hence, radius of circle described electron 𝑅e is minimum 𝑅min, while radius of circle of Li+ ion 

𝑅L is maximum 𝑅max. Applying these discussions in (7) minimum frequency shall be of the particle describing 

circle of longest radius i.e. 𝑅max. This conclusion conforms with the option (d). 

Hence, answer is option (d). 

I-16 To understand torque experienced by a loop carrying current 𝐼 = 10A placed in magnetic field 𝐵 = 0.1 T, a 

simple case of a rectangular loop abcd is taken as shown in the figure. In this case the side ab of the loop is 

facing observer and a current is entering at ‘a’ and after passing through the coil it is returning from ‘b’. 



As per Lorentz’s Force Law, force 𝐹 will be experienced by the sides 

ad and bc of length 𝑙 such that 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝐼𝑙 × 𝐵⃗⃗ ⇒  𝐹⃗ =

𝐼𝑙𝐵 sin 𝛼 𝑛̂…(1). Here, 𝛼 is the angle of magnetic field vector 𝐵⃗⃗ w.r.t. 

length vector 𝑙.  In this case 𝛼 =
𝜋

2
⇒ sin 𝛼 = sin

𝜋

2
= 1. Therefore, 

𝐹⃗ = 𝐼𝑙𝐵𝑛̂. Torque experienced by the loop at its axis would be sum 

of torques 𝛤⃗ on both the sides ad and bc. Thus,   𝛤⃗ = 𝛤⃗𝑎𝑑 + 𝛤⃗𝑏𝑐 = (𝐼𝑙𝐵(−𝑘̂)) ×

(
𝑎

2
(−𝑗̂)) + (𝐼𝑙𝐵(𝑘̂)) × (

𝑎

2
(𝑗̂)) =

𝐼𝑙𝐵𝑎

2
(𝑖̂ + 𝑖̂). It leads to 𝛤 = 𝐼(𝑙𝑎)𝐵 ⇒ 𝛤 =

𝐼𝐴𝐵. ..(2). Here, 𝐴 = 𝑎𝑏 is the area of the loop and the 3-D vectors used as 

reference are shown in the figure.  

In the problem it is stated that magnetic field is perpendicular to the plane of the 

loop and this situation is shown in the figure. In this case total torque on the loop 

is  𝛤⃗ = 𝛤⃗𝑎𝑑 + 𝛤⃗𝑏𝑐 = (𝐼𝑙𝐵(−𝑘̂)) × (
𝑎

2
(−𝑘̂)) + (𝐼𝑙𝐵(𝑘̂)) × (

𝑎

2
(𝑘̂)).  It leads to 

𝛤⃗ =
𝐼𝐴𝐵

2
(𝑘̂ × 𝑘̂)….(3). Thus, for two unidirectional unit vectors is 𝑘̂ × 𝑘̂ = 0 …(4). Combining (3) and (4) 

𝛤 = 0. This conclusion matches with option (a).  

Hence. answer is option (a). 

I-17 Given are beams of electron and protons moving with As per Lorentz’s Force Law, force 𝐹 will be experienced 

by the sides ad and bc of length 𝑙 such that 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ = 𝑞𝑣𝐵 sin 𝛼 𝑛̂…(1). Here, 𝛼 is the angle of magnetic 

field vector wire length  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗, which is stated to be perpendicular i.e. 𝛼 =
𝜋

2
⇒ sin 𝛼 =

1 …(2). Thus, combining (1) and (2) we have 𝐹⃗ = 𝑞𝑣𝐵𝑛̂…(3). 

Charge and mass of electrons are 𝑞𝑒 = −𝑒 and 𝑚𝑒 = 𝑚 while that of proton are  𝑞𝑒 = 𝑒 and 𝑚𝑒 = 1836𝑚.  

Thus forces experienced by electrons and protons are, 𝐹⃗𝑒 = −𝑒𝑣𝐵𝑛̂ and  𝐹⃗𝑝 = 𝑒𝑣𝐵𝑛̂ and accelerations as per 

Newton’s Second Law of Motion would be 𝑎⃗𝑒 =
𝐹⃗𝑒

𝑚𝑒
⇒ 𝑎⃗𝑒 = −

𝑒𝑣𝐵

𝑚
𝑛̂ and 𝑎⃗𝑝 =

𝐹⃗𝑝

𝑚𝑝
⇒ 𝑎⃗𝑝 =

𝑒𝑣𝐵

1876𝑚
𝑛̂…(4) 

It is seen from (4) that – 

(i) Accelerations of electrons and protons are in opposite direction, would cause separation of the two 

beams 

(ii) Magnitude of acceleration of electron 𝑎𝑒 = 1876𝑎𝑝, and hence angle of deviation,  

(iii) Combined effect of (i) and (ii)) in First Equation of  Motion 𝑣⃗ = 𝑢⃗⃗ + 𝑎⃗𝑡 at any instant 𝑡 deviations of 

the two beams would also be different. 

These conclusions match with option (c). Hence, answer is option (c). 

I-18 Given that a charged particle is projected with a velocity 𝑣 making an acute angle 𝜃 with the 

uniform magnetic field, as shown in the figure. Let us consider the particle to be positively e 

positively charged. 

A charged particle in motion in magnetic field, as per Lorentz’s Force Law experiences a force 

𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(1). 

The 3D unit vectors are shown separately. Accordingly, for simplicity, the velocity vector 𝑣⃗ =

𝑣 cos 𝜃 𝑗̂ +  𝑣 sin 𝜃 𝑘̂ …(2) while magnetic field is 𝐵⃗⃗ = 𝐵𝑗…̂(3). Here, 𝜃 is the angle of magnetic field vector 

wire length  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗ 

Combing (1), (2) and (3) 𝐹⃗ = 𝑞(𝑣 cos 𝜃 𝑗̂ +  𝑣 sin 𝜃 𝑘̂) × 𝐵𝑗̂ ⇒ 𝐹⃗ = 𝑞𝑣𝐵[cos 𝜃 (𝑗̂ × 𝑗̂) + sin 𝜃 (𝑘̂ × 𝑗̂)]…(4) 

Since, 𝑗̂ × 𝑗̂ = 0 and 𝑘̂ × 𝑗̂ = −𝑖̂ the (4) leads to 𝐹⃗ = 𝑞𝑣𝐵(−𝑖)̂. Thus the particle P would perform a circular 

motion in 𝑖̂ − 𝑗̂ plane. Yet, the velocity component  𝑣 cos 𝜃 𝑗̂ would cause a constant drift of the circular motion 

along 𝑗̂. Hence, resultant motion of the particle would be a uniformly placed helix or a helix of uniform pitch, 

as provided in option (c). Thus, answer is option (c). 



I-19 Given that a charged particle moves in a uniform magnetic field and a parallel uniform electric field.  For 

convenience unit direction vectors are indicated separately. 

As per mechanics, motion of a particle is influenced by forces acting on it. And forces on a charged 

particle in this case are – 

(a) Force due to magnetic field is governed by Lorentz’s Force Law, thus  𝐹⃗𝑀 = 𝑞𝑣⃗ × 𝐵⃗⃗…(1). 

(b) Force due to electric field is governed by Coulomb’s Force Law. Thus, 𝐹⃗𝐸 = 𝑞𝐸⃗⃗…(2).  

This problem is solved by first considering motion of the charged particle in uniform magnetic 

field. On this motion effect of uniform electric field is superimposed. 

Let, initial velocity of the particle at an instant is 𝑣 making an acute angle 𝜃 with the magnetic field, as shown 

in the figure. Let us consider the particle to be positively charged.  

The 3D unit vectors are shown separately. Accordingly, for simplicity, the velocity vector 𝑣⃗ = 𝑣 cos 𝜃 𝑗̂ +

 𝑣 sin 𝜃 𝑘̂ …(3) while magnetic field is 𝐵⃗⃗ = 𝐵𝑗…̂(4) 

Combing (1), (3) and (4) 𝐹⃗ = 𝑞(𝑣 cos 𝜃 𝑗̂ +  𝑣 sin 𝜃 𝑘̂) × 𝐵𝑗̂. Solving this we 

have 𝐹⃗ = 𝑞𝑣𝐵[cos 𝜃 (𝑗̂ × 𝑗̂) + sin 𝜃 (𝑘̂ × 𝑗̂)] ⇒  𝐹⃗ = 𝑞𝑣𝐵(−𝑖)̂…(5). It is uses 

vector products  𝑗̂ × 𝑗̂ = 0 and 𝑘̂ × 𝑗̂ = −𝑖̂ . Thus the particle P would perform 

a circular motion in 𝑖̂ − 𝑗̂ plane. Yet, the velocity component  𝑣 cos 𝜃 𝑗̂ would 

cause a constant drift of the circular motion along 𝑗̂. Hence, resultant motion of 

the particle would be a uniformly placed helix or a helix of uniform pitch 

without change in speed of the particle. 

Effect of electric field is change in acceleration 𝑎⃗ =
𝐹⃗𝐸

𝑚
. Thus, as per mechanics 

𝑣2 = 𝑢2 + 2𝑎𝑠. Thus, as particle traverses its velocity would change. As a result, the trajectory of the charged 

particle would be a helix whose (i) radius is increasing, and (ii) pitch is increasing. The option (d) is closest 

to the conclusions at (i) and (ii). Hence, answer is option (d). 

I-20 Magnetic field 𝐵 due to current 𝐼 in a circular wire as per Biot-Savart’s Law is 

𝐵 =
𝜇0𝐼

2𝑎
…(1).  For convenience 3D vectors are shown in a separate figure. In this 

system, as shown in the figure, current 𝐼 across the circular wire in (𝑖̂ − 𝑗̂) plane 

takes route through two semicircular arcs each carrying current 
𝐼

2
. 

Thus, using (1) magnitude of the magnetic field at C due to either of 

the semicircular arcs would be 𝐵′ =
1

2

𝜇0
𝐼

2

2𝑎
⇒

𝐼

2
=

𝜇0𝐼

8𝑎
…(2). Yet as per Ampere’s Right Hand 

Thumb rule magnetic field at C due to upper semicircular arc would be in direction  (−𝑖)̂ while 

due to lower semicircular arc would be in direction  (𝑖̂). 

Thus, net magnetic field at the center C would be 𝐵⃗⃗𝐶 = 𝐵⃗⃗𝑈 + 𝐵⃗⃗𝐿 ⇒
𝜇0𝐼

8𝑎
(−𝑖)̂ +

𝜇0𝐼

8𝑎
(𝑖)̂ = 0…(1) 

Further, it is given that a charge 𝑞 is passing through the center with a speed 𝑣. It can be any angle say 𝜃 with 

direction 𝑖.̂  

Therefore, force experienced by the charge as per Lorentz’s Force Law is 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗. In the instant case, 

using the available data it would be 𝐹⃗ = 𝑞(𝑣𝑖)̂ × 0 = 0. Thus, the moving charge would not experience any 

force as provided in option (d). Hence, answer is option (d). 

I-21 Complete statement of Lorentz’s Force Law for electro-magnetic force is 𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗)…(1). It is 

required to find conditions for the charged particle to be at rest i.e. 𝑣 = 0. 

Equation (1) can be split into𝐹⃗ = 𝐹⃗𝑒 + 𝐹⃗𝑚 …(2) Here, electric force is 𝐹⃗𝑒 = 𝑞𝐸⃗⃗…(3) and 𝐹⃗𝑚 = 𝑞(𝑣⃗ × 𝐵⃗⃗) ⇒

𝐹⃗𝑚 = 𝑞𝑣𝐵 sin 𝜃 𝑛̂…(4). Here, 𝑛̂ unit vector perpendicular to the plane of vectors  𝑣⃗ and 𝐵⃗⃗ and 𝜃 is the angle 

of magnetic field vector wire length  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗. Thus, charged particle to remain at rest 

necessary condition as per mechanics is that the two forces must be in equilibrium. Thus combining (2), (3) 

and (4) we have 𝑞𝐸⃗⃗ + 𝑞𝑣𝐵 sin 𝜃 𝑛̂ = 0 ⇒ 𝑞𝐸⃗⃗ = 𝑞𝑣𝐵 sin 𝜃 (−𝑛̂)…(5).  



For particle to be at rest, (5) necessarily leads to 𝑣 = 0 ⇒ 𝐹𝑚 = 0…(6). Accordingly, possibilities that emerge 

are – 

(i) 𝐸 = 0 makes both the addends to be zero as provided in option (a) is correct. 

(ii) Discussions at (i) invalidates possibility of 𝐸 ≠ 0. Hence, option (c) is incorrect. 

(iii) In light of given (6), value of 𝐵, zero or non-zero does not matter. Hence it is not necessary that 𝐵 = 0. 

Hence, option (c) is incorrect. 

(iv) In view of discussions at (iii) above, the option (d) is correct. 

 

Thus, answer is options (a) and (d) 

I-22 Given that a charged particle at rest 𝑣 = 0 experiences experiences a an electromagnetic force. As per 

Lorentz’s Force Law for electro-magnetic force is 𝐹⃗𝑒𝑚 = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗ = 𝑞𝐸⃗⃗ + 𝑞(𝑣⃗ × 𝐵⃗⃗). It leads to 

𝐹⃗ = 𝐹⃗𝑒 + 𝐹⃗𝑚…(1). It leads to 𝐹⃗𝑒 = 𝑞𝐸⃗⃗…(2) and  𝐹⃗𝑚 = 𝑞(𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵 sin 𝜃 𝑛̂…(3), is required to 

find conditions for the charged particle to be at rest i.e. 𝑣 = 0 ⇒ 𝑎 = 0 ⇒ 𝐹 = 0 ⇒ 𝐹⃗𝑒 + 𝐹⃗𝑚 = 0, as per 

mechanics. This is possible whent either both 𝐹𝑒 = 0 and 𝐹𝑚 = 0 or 𝐹⃗𝑒 = −𝐹⃗𝑚 …(4), i.e. both are equal and 

opposite. 

These discussions lead to following possibilities- 

(i) If 𝐸 = 0 then it is must that 𝑞𝑣𝐵 sin 𝜃 = 0. In the given system, it is not necessary for either 𝐵 = 0. Thus, 

option (a) is correct. 

(ii) If 𝐸 ≠ 0 then for (4) to satisfy 𝑞𝑒 = 𝑞𝑣𝐵 sin 𝜃 either 𝐵 = 0 or sin 𝜃 = 0 if 𝐵 ≠ 0. Thus, option (d) is 

correct. 

(iii) If 𝐸 ≠ 0 then for (4) to satisfy 𝑞𝑒 = 𝑞𝑣𝐵 sin 𝜃 condition provided in option (b), 𝐵 ≠ 0 alone would not 

suffice. Hence, option (b) is ncorrect. 

(iv) Option (c) includes possiblities at (i) and (ii) above which are contracdictory. Hence, option (c) is incrrect. 

Thus, answer is option (a) and (d) 

I-23 Given that a charged particle deflects in a gravity free room. It implies that there is no gravitational force and 

only electromagnetic forces  𝐹⃗𝑒𝑚 ≠ 0. As per Lorentz’s Fore Law 𝐹⃗𝑒𝑚 = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗). This can be 

decomposed as 𝐹⃗𝑒𝑚 = 𝐹⃗𝑒 + 𝐹⃗𝑚…(1). Here, 𝐹⃗𝑒 = 𝑞𝐸⃗⃗…(2) and  𝐹⃗𝑚 = 𝑞(𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵 sin 𝜃 𝑛̂…(3). 

Here, 𝜃 is the angle of magnetic field vector wire length  𝐵⃗⃗ w.r.t. velocity vector 𝑣 

Given that the moving charged particle moving is deflected i.e. 𝑣 ≠ 0. It has following -  

(i) Electric field is either zero or along the direction of velocity of the charged particle. This will not change 

speed of particle but would deflect it due to 𝐹⃗𝑚. 

(ii) Electric field is non-zero, and not in the direction of motion of the charged particle, it deflect motion of 

the charged particle as well as speed. 

(iii) If there is magnetic field, as per (3) it will change direction of the motion without change in speed. Thus 

there will be deflection. 

In light of the above possibilities each of the given option is  being analyzed – 

Option (a): This does not guarantee that 𝐵 = 0, henceas per possibility (ii)there would be deflection. Hence, 

this option is incorrect. 

Option (b):  While 𝐵 ≠ 0, it does not guarantee that 𝐸 = 0. Therefore, possibility cancellation of deflection 

by 𝐹⃗𝑚  as per (3) due to  deflection cause by  𝐹⃗𝑒 as per (2) is not assured. Thus if would be there 

due to 𝐹⃗𝑒𝑚 = 𝐹⃗𝑒 + 𝐹⃗𝑚 ≠ 0 and direction of 𝐹⃗𝑒𝑚 is not same as direction of motion of the charged 

particle deflection would be there as per (ii). Hence, alone 𝐵 ≠ 0 is not sufficient. Hence, this 

option is incorrect. 

Option (c): The three possibilities (i), (ii) and (iii) together would satisfy conditions of deflection. Hence, this 

option is correct. 



Option (d): In this case also the three possibilities (i), (ii) and (iii) together would satisfy conditions of 

deflection. Hence, this option is correct. 

Hence, answer is option (c) and (d) 

I-24 Net force 𝐹⃗ experienced by particle of mass 𝑚, carrying charge 𝑞 ≠ 0 moving with a velocity 𝑣⃗ in magnetic 

field 𝐵⃗⃗,  electric field 𝐸⃗⃗ and gravitational acceleration 𝑔⃗ = 0 can be expressed by combining Newton’s Laws 

of Gravitation 𝐹⃗𝑔 = 𝑚𝑔⃗ …(1) and Lorentz’s Fore Law 𝐹⃗𝑒𝑚 = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗)…(2). Thus, 𝐹⃗ = 𝐹⃗𝑔 + 𝐹⃗𝑒𝑚…(3). 

It is given that charged particle of mass 𝑚 ≠ 0  moves in gravity free space. It means 𝑔⃗ = 0 ⇒ 𝐹⃗𝑔 = 0…(4). 

Combining (2), (3) and (4), net force would be 𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗ = 𝑞𝐸⃗⃗ + 𝑞(𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗ = 𝑞𝐸⃗⃗ +

𝑞𝑣𝐵 sin 𝜃 𝑛̂…(5). Here, 𝑛̂ unit vector perpendicular to the plane of vectors  𝑣⃗ and 𝐵⃗⃗ and 𝜃 is the angle of 

magnetic field vector wire length  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗. 

Further, it is given that the particle is moving with uniform velocity, therefore, as per Newton’s Laws of 

Motion  𝐹⃗ = 0.  This possible only when 𝑞𝐸⃗⃗ = −𝑞𝑣𝐵 sin 𝜃 𝑛̂…(6)This leads to following possibilities- 

(i) If 𝐸 = 0 and 𝐵 = 0, or 

(ii) If 𝐸 = 0 and 𝜃 = 0; in this case condition 𝐵 ≠ 0 is valid, or 

(iii) If 𝐸 = 0 and 𝜃 = 𝜋; in this case condition 𝐵 ≠ 0 is valid, or  

(iv) If 𝐸 ≠ 0 and 𝐵 ≠ 0 but the electric field is in direction of 𝑛̂ i.e. both electrical force and magnetic force 

are equal and opposite. 

These discussions are compared with the options given  

Option (a): Satisfies possibility (i), hence this option is correct.  

Option (b): Satisfies possibility (ii), hence this option is correct. 

Option (c): In this case there will acceleration due to electrostatic force, but magnetic force would be zero. 

Thus, equation (6) would not be satisfied. Hence, this option is incorrect. 

Option (d): Satisfies possibility (iv), hence this option is correct.  

Thus, answers is option (a), (b) and (d). 

I-25 Given that a particle carrying charge 𝑞 moves along a circle in presence of constant electric and magnetic 

field. It implies that the particle is experiencing a centripetal force 𝐹⃗𝑐. Charged particle in presence of given 

fields as per Lorentz’s Fore Law would experience 𝐹⃗𝑒𝑚 = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗𝑒𝑚 = 𝐹⃗𝑒 + 𝐹⃗𝑚…(1). Here, 𝐹⃗𝑒 =

𝑞𝐸⃗⃗…(2) and  𝐹⃗𝑚 = 𝑞(𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵 sin 𝜃 𝑛̂…(3). Here, 𝜃 is the angle of magnetic field vector  𝐵⃗⃗ w.r.t. 

velocity vector 𝑣⃗ 

Effect of 𝐹⃗𝑒 is an acceleration 𝑎⃗𝑒 =
𝐹⃗𝑒

𝑚
⇒ 𝑎⃗𝑒 =

𝑞𝐸⃗⃗

𝑚
 …(4) which in accordance with the equations of motion 

𝑣⃗ = 𝑢⃗⃗ + 𝑎⃗𝑡 would change velocity of particle. Thus, for 𝑣 = Const electric field 𝐸 = 0. This contradicts 

conditions, necessary for a circular motion. Thus,  options (c) and (d) where given that 𝐸 ≠ 0 turn out to be 

incorrect. 

Taking discussion while invalidating options (c) and (d) due to 𝐸 ≠ 0, options (a) and (b) are open for 

consideration where) 𝐸 = 0. For circular motion, centripetal force is created by magnetic field ad hence 𝐹⃗𝑚 ≠
0. It, using (3),  leads to 𝑞𝑣𝐵 sin 𝜃 ≠ 0. From the statement of the problem cahrged particle performing 

circular motion 𝑞 ≠ 0 && 𝑣 ≠ 0. Then the only requirements for circular motion are 𝐵 ≠ 0 && 𝜃 ≠ 0. Thus, 

option (a) turns out to be incorrect. 

As regards option (b) where given that 𝐸 = 0, yet it is silent on angle between vectors 𝑣⃗ and 𝐵⃗⃗. But, it certainly 

stipulates 𝐵 ≠ 0 a necessary condition for circular motion. Hence, option (b) is correct. 

Hece, answer is option (b). 



I-26 Force experienced by a charged particle in electric and magnetic field, as per Lorentz’s Force Law is 𝐹⃗𝑒𝑚 =

𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗𝑒𝑚 = 𝐹⃗𝑒 + 𝐹⃗𝑚…(1). Here, 𝐹⃗𝑒 = 𝑞𝐸⃗⃗…(2) and  𝐹⃗𝑚 = 𝑞(𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵 sin 𝜃 𝑛̂…(3). 

Here, 𝜃 is the angle of magnetic field vector  𝐵⃗⃗ w.r.t. length vector 𝑣⃗  

For the particle to go undeflected in the system ; it implies that 𝑞 ≠ 0,  𝑣 ≠ 0, 𝐸 ≠ 0 and 𝐵 ≠ 0.Thus it has 

to satisfy two conditions 𝐹⃗𝑚 ≠ 0 && 𝐹⃗𝑒 . Requirements for compliance of each option is being discussed- 

Option (a): For 𝐹⃗𝑒 ≠ 0: it must have 𝑬⃗⃗⃗||𝒗⃗⃗⃗. And for 𝐹⃗𝑚 = 0 it must have sin 𝜃 = 0 ⇒ 𝜃 = 0 i.e. 𝑣⃗ × 𝐵⃗⃗. Using 

Euclid’s postulates that since 𝐸⃗⃗||𝑣⃗ && 𝑣⃗||𝐵⃗⃗ it leads to 𝑬⃗⃗⃗||𝑩⃗⃗⃗. This satisfies conditions in option 

(a), hence it is correct. 

Option (b): For 𝐹⃗𝑒𝑚 ≠ 0 net force 𝐹⃗𝑒 +  𝐹⃗𝑚 is along 𝑣⃗. This necessitates that 𝐸⃗⃗||𝑣 and for 𝐹⃗𝑚 = 𝑞𝑣𝐵 sin 𝜃 𝑛̂ 

𝜃 ≠ 0, Thus, E⃗⃗⃗ is not parallel to B⃗⃗⃗ which satisfies conditions in option (b). Hence, option (b) is 

correct. 

Option (c): In one part of the option 𝑣⃗||𝐵⃗⃗ ⇒ 𝜃 = 0 ⇒ sin 𝜃 = 0 then as per (3) 𝐹⃗𝑚 = 0 satisfies condition of 

undeflected motion of the particle. But in secord part of the option states that 

𝐸⃗⃗ 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑜 𝐵⃗⃗. Hence, the particle will experience an acceleration in direction other 

that of  𝑣⃗. Thus particle will experience deflection. Hence, option (c) is incorrect. 

Option (d): From the above discussions for particle to move undeflected  𝐸⃗⃗||𝐵⃗⃗ not enough. It must also 

have 𝑣⃗||𝐸⃗⃗ which is denied in secod part of the option. Hence, option (d) is incorrect. 

Thus. answer is option (a) and (b). 

I-27 Given that a particle carrying charge 𝑞 is un-accelerated i.e. 𝑎⃗ = 0 and moves a in region which contains 

electric field 𝐸⃗⃗ ≠ 0 and magnetic field 𝐵⃗⃗ ≠ 0. Thus, as per Lorentz’s Force Law is 𝐹⃗𝑒𝑚 = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) ⇒

𝐹⃗𝑒𝑚 = 𝐹⃗𝑒 + 𝐹⃗𝑚 = 0…(1). Here, 𝐹⃗𝑒 = 𝑞𝐸⃗⃗…(2) and  𝐹⃗𝑚 = 𝑞(𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵 sin 𝜃 𝑛̂…(3). Here, 𝜃  is the 

angle of magnetic field vector  𝐵⃗⃗ w.r.t. velocity vector 𝑙, while unit vector 𝑛̂ is perpendicular to plane 

containing vectors 𝑣⃗ & 𝐵⃗⃗. It implies that 𝑛̂ ⊥ 𝑣⃗ && 𝑛̂ ⊥ 𝐵⃗⃗…(4). In this context each of the option is being 

analyzed. 

Option (a): Equation (1) leads 𝐹⃗𝑒 = −𝐹⃗𝑚 ⇒ 𝑞𝐸⃗⃗ = −𝑞𝑣𝐵 sin 𝜃 𝑛̂…(5).  Further, magnetic field causes 

acceleration along 𝑛̂  then as per (5) we have 𝐸⃗⃗ → 𝑛̂ (6). Combining (1) and (6), we have  𝐸⃗⃗ ⊥

𝐵⃗⃗…(7). Thus, option (a) is correct. 

Option (b):  Using the discussions at option (a) together with 𝑛̂ ⊥ 𝑣⃗ in (4), leads to  𝐸⃗⃗ ⊥ 𝑣⃗. Thus, option (b) 

is correct. 

Option (c):  As provided 𝑣⃗ ⊥ 𝐵⃗⃗ ⇒ 𝜃 =
𝜋

2
⇒ sin 𝜃 = 1 ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵𝑛̂ as per (3). But, this alone is not 

sufficient unless (5) is satisfied. Stipulation in this option is silent in respect of 𝐸⃗⃗. Hence, this 

option (c) is incorrect. 

Option (d):  Since all the three quantities are 𝐸⃗⃗, 𝑣⃗ & 𝐵⃗⃗ mere stating 𝐸 = 𝑣𝐵, as stated in the option is 

insufficient to satisfy (5). Hence, option (d) is incorrect. 

Thus. answer is option (a) and (b). 

I-28 As stated in problem charge on ion P is 𝑞𝑃 = 𝑒 and ion Q is 𝑞𝑄 = 2𝑒 and 

projected in uniform magnetic field 𝐵⃗⃗ with a velocity 𝑣⃗ such that 𝑣⃗ ⊥ 𝐵⃗⃗ ⇒

𝜃 =
𝜋

2
…(1). Though both the particles of masses 𝑚 are projected from the 

same place, however, for better understanding of underlying concepts the 

particles are shown separately in the figure. 

As per Lorentz’s Force Law is 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣𝐵 sin 𝜃 𝑛̂…(2). 

Combining (1) and (2) we get 𝐹⃗ = 𝑞𝑣𝐵𝑛̂…(3). Here, 𝜃 is the angle of 

magnetic field vector  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗ 



This force 𝐹⃗, as per mechanics acts as centripetal force and would cause a circular motion of radius 𝑟 such 

that 𝐹⃗ = 𝑚𝑎⃗…(4). Combining (3) and (4), 𝑎⃗ =
𝑞𝑣𝐵

𝑚
𝑛̂ ⇒ 𝑎 =

𝑞𝑣𝐵

𝑚
…(5). 

Again, as per mechanics, centripetal acceleration 𝑎 =
𝑣2

𝑟
…(6). Combining (5) and (6), 

𝑣2

𝑟
=

𝑞𝑣𝐵

𝑚
⇒ 𝑞 = (

𝑚𝑣

𝐵
)

1

𝑟
 

…(7) 

Applying the given data to the charged particle P and Q we have 𝑒 = (
𝑚𝑣

𝐵
)

1

𝑟𝑝
…(8) and 2𝑒 = (

𝑚𝑣

𝐵
)

1

𝑟𝑞
…(9). 

Taking ratio of (8) and (9) we have 
𝑒

2𝑒
=

(
𝑚𝑣

𝐵
)

1

𝑟𝑝

(
𝑚𝑣

𝐵
)

1

𝑟𝑞

⇒
𝑟𝑞

𝑟𝑝
=

1

2
…(10). This final form is being used to analyze the 

given options- 

(a) Both ions will go along circle of equal radii 

(b) The circle described by the single-ionized charge will have a radius double that of the other circle 

(c) The two circles do not touch each other 

(d) The two circles touch each other 

Option (a): The ration of the two radii 
𝑟𝑞

𝑟𝑝
≠ 1, hence option (a) is incorrect. 

Option (b): Equation (10) leads to 𝑟𝑝 = 2𝑟𝑞, it satisfies statement in option (b). Hence, option (b) is correct. 

Option (c): Given that the two particles are projected in the given way from same place and hence trajectories, 

of the two particles would touch each other. This contradicts statement in this option. Hence, 

option (c) is incorrect. 

Option (d): The analysis at option (c) asserts statement in this option. Hence, option (d) correct.  

Thus, answer is option (b) and (d). 

I-29 It is required to determine direction of magnetic field. Given that charge of an electron is 𝑞 = −𝑒 moving 

with a velocity along X-axis with a velocity 𝑢⃗⃗ = 𝑢𝑖̂. It is required that velocity of the particle in a short time 

𝑡 reverses and particle start moving along (−𝑖)̂; such that 𝑣⃗ = 𝑣(−𝑖)̂. Thus, as per equation of motion 𝑣⃗ =

𝑢⃗⃗ + 𝑎⃗𝑡 ⇒ 𝑎⃗ =
𝑣⃗⃗−𝑢⃗⃗⃗

𝑡
⇒ 𝑎⃗ =

𝑣⃗⃗−𝑢⃗⃗⃗

𝑡
⇒ 𝑎⃗ =

𝑣(−𝑖̂)−𝑢𝑖̂

𝑡
⇒ 𝑎⃗ =

𝑣+𝑢

𝑡
 (−𝑖)̂…(1) 

As per Lorentz’s Force Law is 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = (−𝑒)𝑣𝐵 sin 𝜃 𝑛̂…(2). Here, 𝜃 is the angle of magnetic 

field vector  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗, while unit vector 𝑛̂ is perpendicular to the plane containing vectors 

𝑣⃗ & 𝐵⃗⃗. Combining (1) and (2) we get 𝐹⃗ = 𝑞𝑣𝐵𝑛̂…(3).  

As per mechanics 𝐹⃗ = 𝑚𝑎⃗..(4). Comparing (3) and (4), 𝑚𝑎⃗ = 𝑞𝑣𝐵𝑛̂ ⇒ 𝑎⃗ =
(−𝑒)𝑣𝐵

𝑚
𝑛̂…(5). 

Now comparing (1) and (5), 
(−𝑒)𝑣𝐵

𝑚
𝑛̂ =

𝑣+𝑢

𝑡
(−𝑖)̂ ⇒ 𝑛̂ → 𝑖̂…(6). It implies that magnetic force is along X-

axis. Going back to (2) which stipulates that unit vector 𝑛̂ is perpendicular to the plane containing vectors 

𝑣⃗ & 𝐵⃗⃗. In the instant case this is X − Y plane. Thus, it is not necessry for magnetic field to be along Y-axis only 

or Z-axis only. Hence, option (c) and (d)are incorrect. 

Above discussions lead to magnetic flux  𝐵⃗⃗ can be anywhere on the X-Y plane that make Option (a) and (b) 

correct. 

Hence, answeris option (A) and (b). 



I-30 As per Electromagnetic Field Theory, magnetic field 𝐵⃗⃗ = 𝐵𝑏̂ and Electric field 𝐸⃗⃗ = 𝐸𝑒 produces  

electromagnetic wave 𝑐𝑣 which propagates with velocity 𝑐  in direction 𝑣 ⊥ 𝑒 && 𝑣 ⊥ 𝑏̂, while 𝑒 ⊥ 𝑏̂. 

Dimensionally, [𝐸] = MLT−3I−1 …(1), [𝐵] = MI−1T−2…(2) and [𝑣] = LT−1…(3). 

Each of the option is being analyzed dimensionally – 

Option (a): 𝐵𝑦
′ =  𝐵𝑦 +

𝑣𝐸𝑧

𝑐2 ⇒ [LHS] =  MI−1T−2 && [RHS] = MI−1T−2 +
(LT−1)×(MLT−3I−1)

(LT−1)2 . The RHS  

leads to [RHS] = MI−1T−2 + MI−1T−2. Since both the addends on the RHS have same 

dimensions hence [RHS] = MI−1T−2. Dimensionally, [𝐿𝐻𝑆] = [𝑅𝐻𝑆], these are not wrong. 

Hence, as desired option (a) is incorrect. 

Option (b): 𝐵𝑦
′ =  𝐸𝑦 −

𝑣𝐵𝑧

𝑐2 ⇒ [LHS] =  MI−1T−2 && [RHS] = MLT−3I−1 +
(LT−1)×(MLT−3I−1)

(LT−1)2 . The RHS  

leads to [RHS] = MLT−3I−1 + MI−1T−2. Both the addends on RHS have unequal dimensions 

and hence they can be added. This make statement at option (b) wrong. Hence as desired option 

(b) is correct. 

Option (c): 𝐵𝑦
′ =  𝐵𝑦 + 𝑣𝐸𝑧 ⇒ [LHS] =  MI−1T−2 && [RHS] = MI−1T−2 + (LT−1) × (MLT−3I−1). The 

RHS  leads to [RHS] = MLT−3I−1 + ML2I−1T−4. Both the addends on RHS have unequal 

dimensions and hence they can be added. This make statement at option (b) wrong. Hence as 

desired option (b) is correct. 

Option (d): 𝐵𝑦
′ =  𝐸𝑦 + 𝑣𝐵𝑧 ⇒ [LHS] =  MI−1T−2 && [RHS] = MLT−3I−1 + (LT−1) ×  (MI−1T−2). The 

RHS  leads to [RHS] = MLT−3I−1 + MLI−1T−3. Both the addends on the RHS have same 

dimensions hence [RHS] = MI−1T−2. Dimensionally, [𝐿𝐻𝑆] = [𝑅𝐻𝑆], these are not wrong. 

Hence, as desired option (a) is incorrect. 

Hence, answer is option (b) and (c) 

N.B.: This problem requires understanding of electromagnetic waves. Yet, despite 𝐸, 𝐵 and 𝑣 being discretely 

different physical quantities, correctness of relations between them has been solved dimensionally. 

I-31 Given that  𝛼-particle having charge 𝑞 = 2𝑒 ⇒ 𝑞 = 2 × (1.6 × 10−19) C is moving, in a region having 

magnetic field 𝐵 = 1.0 T in a direction south to north i.e. along (−𝑖)̂, with a velocity 𝑣 = 3 × 107m/s in a 

direction upward i.e. along 𝑘̂. With the given data angle 𝜃 between vectors 𝑣⃗ and 𝐵⃗⃗ is 𝜃 =
𝜋

2
. 

In this case magnetic force experience by the 𝛼-particle can be 

determined using Therefore, magnetic force using Lorentz’s Force 

Law 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣𝐵 sin 𝜃 𝑛̂…(1). 

Using the available data in (1), 𝐹⃗ = (2 × (1.6 × 10−19)) × (3 ×

107)𝑘̂.× 1.0(−𝑖̂) × sin
𝜋

2
. This resolves into 𝐹⃗ = 9.6 × 10−12(−𝑗̂) N. 

It implies that a force 𝟗. 𝟔 × 𝟏𝟎−𝟏𝟐 N will act towards the west is the answer. 

I-32 Given system is shown in figure where an electron P having charge 𝑞 = (−)𝑒 = (−)1.6 × 10−19C…(1).  It 

is stated to be moving horizontally i.e. in (𝑖̂ − 𝑗̂) plane parallel to 𝑗̂ with a kinetic energy 𝐾𝐸 = 10 keV…(2)  

As per mechanics 𝐾𝐸 =
1

2
𝑚𝑣2 ⇒ 𝑣⃗ = (√

2×𝐾𝐸

𝑚
) 𝑗̂…(3) And as per electrostatics 1J = 1CV…(4) Thus, 

combining (1), (2) and (4) we have 𝐾𝐸 = 10 × 103 × 1.6 × 10−19CV ⇒ 𝐾𝐸 = 1.6 × 10−15J…(5). 

It is also given that magnetic field 𝐵⃗⃗ = 1.0 × 10−7𝑘̂ is in vertically upward direction. This makes it possible 

to analyze motion of electron using Lorentz’s Force Law 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣𝐵 sin 𝜃  𝑛̂…(6). Here, 𝜃 is 

the angle of magnetic field vector  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗, while unit vector 𝑛̂ is perpendicular to the plane 

containing vectors 𝑣⃗ & 𝐵⃗⃗. 



With the given geometry of the system 𝜃 =
𝜋

2
⇒ sin 𝜃 = 1. This together with the 

available data (6) leads to 𝐹⃗ = (−𝑒)(𝑣𝑗̂) × (𝐵𝑘̂) ⇒ 𝐹⃗ = 𝑒𝑣𝐵(−𝑖)̂  ⇒ 𝑎⃗ =
𝑒𝑣𝐵

𝑚
(−𝑖)̂…(7). This leads to conclusion that the electron would deflect towards left of 

the direction of its motion as shown in the figure  and is answer of the part (a)  

Further, in part (b) it is required to determine sideways deflection of the electron when 

it travels through a distance, shown in figure as AB, 𝑦 = 1𝑚…(8) This can be analyzed 

on the lines of projectile motion where motion along (𝑗̂) is accelerated, i.e. with uniform velocity, and to travel 

a distance 𝑦 it would take time 𝑡 =
𝑦

𝑣
…(9). 

During this period magnitude of deflection of electron along (−𝑖)̂, shown in figure as  BC as per second 

equation of motion, would be equal 𝑥 = 0 × 𝑡 +
𝑎

2
𝑡2 ⇒ 𝑥 =

𝑎

2
(

𝑦

𝑣
)

2
…(10). 

Combining, (3),(5), (7), (8) and (10) we have 𝑥 =
1

2
(

𝑒𝑣𝐵

𝑚
) (

𝑦

𝑣
)

2
⇒ 𝑥 =

1

2
(

𝑒𝐵𝑦2

𝑚𝑣
) ⇒ 𝑥 =

1

2
(

𝑒𝐵𝑦2

𝑚(√
2×𝐾𝐸

𝑚
)

). It 

simplifies into 𝑥 =
1

2
(

𝑒𝐵𝑦2

√2×𝑚×𝐾𝐸
) , mass of electron 𝑚 = 9.1 × 10−31kg. Using the available data 

𝑥 =
1

2
(

(1.6×10−19)×(1.0×10−7)×12

√2×(9.1×10−31)×(1.6×10−15)
) ⇒ 𝑥 =

0.80×10−26

√2.9×10−46
⇒ 𝑥 = 0.148 × 10−3m or 0.015cm is the answer of part 

(b) 

Thus, answer is (a) Left,  (b) 0.015 cm 

N.B.: Though the problem is simple it involves integration multiple concepts and conversion of units 

I-33 Given is that particle having charge 𝑞 = 1.0 × 10−9C in a magnetic field 𝐵⃗⃗ = (4.0 × 10−3)𝑘̂ experiences a 

force 𝐹⃗ = (4.0𝑖̂ + 3.0𝑗̂) × 10−10N. It is required to find velocity 𝑣 of the charged particle.  

As per Lorentz’s Force Law 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗, here velocity is a vector say 𝑣⃗ = 𝑎𝑖̂ + 𝑏𝑗̂ + 𝑐𝑘̂.  

Using the available data, (4.0𝑖̂ + 3.0𝑗̂) × 10−10 = (1.0 × 10−9)(𝑎𝑖̂ + 𝑏𝑗̂ + 𝑐𝑘̂) × (4.0 × 10−3)𝑘̂. It leads to 

(4.0𝑖̂ + 3.0𝑗̂) × 10−10 = (4.0 × 10−12) (𝑎(𝑖̂ × 𝑘̂) + 𝑏(𝑗̂ × 𝑘̂) + 𝑐(𝑘̂ × 𝑘̂)). Using principle of cross-

product of vectors (4.0𝑖̂ + 3.0𝑗̂) = 0.04(𝑎(−𝑗̂)) + 𝑏𝑖̂ ⇒ 4.0𝑖̂ + 3.0𝑗̂ = 0.04𝑏𝑖̂ − 0.04𝑎𝑗̂. Equating each 

component of vectors we have 0.04𝑏 = 4.0 ⇒ 𝑏 = 100 and −0.04𝑎 = 3.0 ⇒ 𝑎 = −75. Thus, velocity 

vector is 𝑣⃗ = (−𝟕𝟓𝒊̂ + 𝟏𝟎𝟎𝒋̂)m/s. is the answer. 

I-34 Given that 𝐵⃗⃗ = (7.0𝑖̂ − 3.0𝑗̂) × 10−3T and acceleration of a charged particle is 𝑎⃗ = (𝑥𝑖̂ + 7.0𝑗̂) × 10−6 m/s2. 

Acceleration of a particle, as per mechanics is 𝐹⃗ = 𝑚𝑎⃗….(1). Here, mass of the charged particle and 𝐹⃗ force 

on the particle, in this case, as per  Lorentz’s Force Law 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣𝐵 sin 𝜃  𝑛̂…(2). Here, 𝜃 and 

𝛼 is the angle of magnetic field vector wire length  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗, while unit vector 𝑛̂ is 

perpendicular to the plane containing vectors 𝑣⃗ & 𝐵⃗⃗. 

Form these discussions t is clear that for force to exist the angle is in the range  0 < 𝜃 < 𝜋.As long as angle 

is in this range 𝑎⃗ ⊥ 𝑣⃗ && 𝑎⃗ ⊥ 𝐵⃗⃗. In this case vector-dot products  𝐹⃗ ∙ 𝑣⃗ = 0…(3)and   𝐹⃗ ∙ 𝐵⃗⃗ = 0…(4) 

Since, only 𝐹⃗ and  𝐵⃗⃗ are specified and hence taking (1) and (4) with the given data it is necessary that we have 
(7.0𝑖̂ − 3.0𝑗̂) ∙ (𝑥𝑖̂ + 7.0𝑗̂) = 0 ⇒ 7.0𝑥(𝑖̂ ∙ 𝑖̂) − 3.0𝑥(𝑗̂ ∙ 𝑖̂) + 49(𝑖̂ ∙ 𝑖)̂ − 21(𝑗̂. 𝑗̂) = 0. Applying principle of 

dot-product of vectors we have 7.0𝑥 − 21 = 0 ⇒ 𝑥 =
21

7.0
⇒ 𝒙 = 𝟑. 𝟎 is the answer. 



I-35 Given that a bullet of mass 𝑚 = 0.01 kg carries a charge 𝑞 = 4.00 × 10−6 C is fired 

along horizontal direction with a speed 𝑣 = 270 m/s. There is a vertical magnetic field 

𝐵 = 500 × 10−6 T. For convenience initial position of the particle is taken at origin O 

and its motion along (𝑖̂ − 𝑗̂) velocity vector as 𝑣⃗ = 𝑣𝑗…̂(1) as shown in the figure. 

Accordingly, 𝐵⃗⃗ = 𝐵𝑘̂…(2). 

As per Lorentz’s Force Law 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(3). Combining (1), (2) and (3), 𝐹⃗ =

𝑞(𝑣𝑗̂ × 𝐵𝑘̂) ⇒ 𝐹⃗ = 𝑞𝑣𝐵(𝑗̂ × 𝑘̂) ⇒ 𝐹⃗ = 𝑞𝑣𝐵𝑖…̂(4), is arrived at using principle of 

cross-product of vectors. Therefore, acceleration of the particle taking (4), as per mechanics, is 𝑎⃗ =
𝐹⃗

𝑚
⇒ 𝑎⃗ =

𝑞𝑣𝐵

𝑚
𝑖…̂(5). 

Using available data, 𝑎⃗ =
(4.00×10−6)(270)(500×10−6)

0.01
𝑖̂ ⇒ 𝑎⃗ = 5.4 × 10−5𝑖 ̂m/s2…(6). Rest of the problem is 

simple application of concepts of projectile motion in this case. 

While particle is accelerated with magnetic force along 𝑖,̂ its travel of 𝑦 = 100 m along 𝑗̂ is un-accelerated. 

Hence, hence time 𝑡 taken in this travel, using available data, is 𝑡 =
𝑦

𝑣
⇒ 𝑡 =

100

270
⇒ 𝑡 =

10

27
 s…(7). 

Motion of the particle with acceleration 𝑎⃗ with initial velocity 𝑢 = 0 in time 𝑡 is deflection 𝑥 = 𝐵𝐶 = 𝑂𝐴  of 

the particle along  𝑖.̂ This can be determined with equation of motion, 𝑥 = 0 × 𝑡 +
𝑎𝑡2

2
…(8). Using available 

data in (8) we have 𝑥 =
(5.4×10−5)(

10

27
)

2

2
⇒ 𝑥 = 𝟑. 𝟕𝟎 × 𝟏𝟎−𝟔m is the answer. 

N.B.: This problem involves integration of concepts of mechanics with Lorentz’ Force Law. 

I-36 Given that in a room there are electric and magnetic fields. Acceleration of proton 

in two different cases proton is given as shown in the figure. Reference unit 

direction vectors are also indicated in the figure to facilitate analysis.  

Motion of a proton of mass 𝑚 and charge 𝑒 can be analyzed in accordance with 

Lorentz’s Force Law 𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) ⇒ 𝑎⃗ =
𝑒

𝑚
𝐸⃗⃗ +

𝑒𝑣𝐵

𝑚
sin 𝜃  𝑛̂…(1). Here, 𝜃 

is the angle of magnetic field vector wire length  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗, while 

unit vector 𝑛̂ is perpendicular to the plane containing vectors 𝑣⃗ & 𝐵⃗⃗. 

Given are two cases as under - 

Case 1: When proton is released from the state of rest 𝑣 = 0, acceleration of the 

particle as per (1) would be 𝑎⃗1 = 
𝑒

𝑚
𝐸⃗⃗…(2). It is given that  acceleration 

is towards west, 𝑎⃗1 = 𝑎0(−𝑗̂)…(3). Combining (2) and (3) we get 
𝑒

𝑚
𝐸⃗⃗ = 𝑎0(−𝑗̂) ⇒ 𝐸⃗⃗ =

𝑎0𝑚

𝑒
(−𝑗̂)…(4). Using reference vectors electric field is of magnitude 

𝒂𝟎𝒎

𝒆
 

towards west. 

Case 2: When proton projected  towards north with a velocity 𝑣⃗ = 𝑣0(−𝑖̂), it experiences an acceleration 

𝑎⃗2 = 3𝑎0(−𝑗̂)…(5). As per (1) together with (4) is 𝑎⃗2 =
𝑒

𝑚
(

𝑎0𝑚

𝑒
) (−𝑗̂) +

𝑒𝑣𝐵

𝑚
sin 𝜃  𝑛̂…(6).  

Combining (5) and (6), (−)3𝑎0𝑗̂ = (−)𝑎0𝑗̂ +
𝑞𝑒𝐵

𝑚
sin 𝜃  𝑛̂ ⇒

𝑒𝑣0𝐵

𝑚
sin 𝜃 𝑛̂ = (−)2𝑎0𝑗̂. It leads to 

𝐵 𝑛̂ =
2𝑚𝑎0

𝑒𝑣 sin 𝜃
(−𝑗̂)…(7).  

Going back to discussions following (1) and that velocity 𝑣 is along (– 𝑖̂)the magnetic field 𝐵⃗⃗ would 

be on (𝑖̂ − 𝑘̂) plane. Accordingly, angle 𝜃  is of magnetic field with velocity in (𝑖̂ − 𝑘̂). The 

equation (8), where parameters 𝑚, 𝑒, 𝑎0 and , 𝑣0 are constant,  be written as 𝐵 = 𝐾
1

sin 𝜃
. Therefore, 

for maximum 𝐵, let us apply concept of maxima-minima 
𝑑𝐵

𝑑𝜃
= 0 ⇒

𝑑

𝑑𝜃
(

1

sin 𝜃
) = 0…(8) Now 

substitute 𝑢 = sin 𝜃 ⇒
𝑑𝑢

𝑑𝜃
=

𝑑

𝑑𝜃
sin 𝜃 ⇒

𝑑𝑢

𝑑𝜃
= cos 𝜃. Manipulating (8) 

𝑑

𝑑𝜃
(

1

𝑢
) =

𝑑

𝑑𝑢
(

1

𝑢
) ×

𝑑𝑢

𝑑𝜃
. It 



further leads to 
𝑑

𝑑𝜃
(

1

𝑢
) = (−)

1

𝑢2 × cos 𝜃 ⇒
𝑑𝐵

𝑑𝜃
= (−)

cos 𝜃

sin2 𝜃
…(9). Further, 

cot 𝜃

sin 𝜃
= 0 ⇒ cot 𝜃 = 0. It 

is a trigonometric equation and its principal solution for either maxima or minima is 𝜃 ±
𝜋

2
. It 

requires to choose among the two possible values of 𝜃 for maximum value of 𝐵. This is ascertained 

by taking second derivative of (8). If 
𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) > 0 the its solution among the two values will give 

minimum 𝐵, else if 
𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) < 0 then minima. 

Accordingly, 
𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) =  

𝑑

𝑑𝜃
(−

cot 𝜃

sin 𝜃
) ⇒

𝑑

𝑑𝜃
(−

cot 𝜃

sin 𝜃
) = (−)

sin 𝜃(
𝑑

𝑑𝜃
cot 𝜃)−cot 𝜃(

𝑑

𝑑𝜃
sin 𝜃)

sin2 𝜃
. It, further, 

solves into 
𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) = (−)

sin 𝜃×(−cosec2 𝜃)−cot 𝜃×sin 𝜃

sin2 𝜃
⇒

𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) =

cosec 𝜃+cot 𝜃×sin 𝜃

sin2 𝜃
…(10). 

This is where value of 
𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) in (10) needs to be examined for solution 𝜃 ±

𝜋

2
 of obtained from (9), 

Taking each of the values- 

(i) 𝜃 = (+)
𝜋

2
: Then, 

𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) =

1−0×1

1
⇒

𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) = 1 ⇒

𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) > 0 is condition of minima. 

(ii) 𝜽 = (−)
𝝅

𝟐
: Then, 

𝒅

𝒅𝜽
(

𝒅𝑩

𝒅𝜽
) =

−𝟏−𝟎×(−𝟏)

(−𝟏)𝟐 ⇒
𝒅

𝒅𝜽
(

𝒅𝑩

𝒅𝜽
) = −𝟏 ⇒

𝒅

𝒅𝜽
(

𝒅𝑩

𝒅𝜽
) < 𝟎 is condition of 

maxima, as desired 

As discussed following (1) above, 𝜃 is angular displacement of vector 𝐵⃗⃗ w.r.t. 𝑣⃗ and that the angle 

is (+)ve in anticlockwise direction, while it is (-)ve in clockwise direction. Thus, going back to the 

figure magnetic field 𝑩⃗⃗⃗ will be along (𝑘̂) i.e. downward . 

Thus, answers are 𝑬 =
𝒎𝒂𝟎

𝒆
 toward west and 𝑩 =

𝟐𝒎𝒂𝟎

𝒆𝒗𝟎
 downward. 

N.B.: This problem integrates concepts of electromagnetic force along with mathematics of vector algebra, 

trigonometric equations, maxima-minima, direction of angular displacement, It is a good example to 

appreciate beauty of mathematics in analysis of physical situations correctly, and in an unambiguous manner. 

Proficiency and confidence at it is acquired through understanding of concepts and its practice in problem 

solving. 

I-37 It is required to find magnetic force, which as per  Lorentz’s Force Law is  𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒ 𝐹⃗ = (𝐼𝑙) × 𝐵⃗⃗ ⇒

𝐹⃗ = 𝐼𝑙𝐵 sin 𝜃  𝑛̂…(1). Here, 𝐼 = 10A, 𝑙 = 0.10m, 𝐵 = 0.1T and 𝜃 = 530 is the anglual deviation of vector 

of 𝑣⃗ w.r.t. to 𝐵⃗⃗, while unit vector 𝑛̂ is perpendicular to the plane containing vectors 𝑣⃗ & 𝐵⃗⃗. 

Using avaliable data in (1) we have 𝐹⃗ = (𝐼𝑙𝐵 sin 530) 𝑛̂ ⇒  𝐹⃗ = (10 × 0.10 × 0.1 × 0.798) 𝑛̂ ⇒  𝐹⃗ =

0.08𝑛̂. Thus, answer is 0.08 Nperpendicular plane of containing vectors 𝒍 − 𝑩⃗⃗⃗ . 

I-38 Given system is shown in the figure where square wire frame abcd on (𝑖̂ − 𝑗̂) plane has 

each side of length 𝑙 = 0.30 m. A current 𝐼 = 2A enters the frame at vertex ‘a’ and 

leaves at vertex ‘c’. The frame forms a parallel combination of equal resistances such 

that each side carries a current 𝑖 =
𝐼

2
. Further,  given that magnetic field is 

perpendicular to the plane of the frame 𝐵⃗⃗ = 𝐵𝑘̂ as shown in the figure. 

Magnetic force experienced by a wire as per  Lorentz’s Force Law is mathematically 

𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒ 𝐹⃗ = (𝑖𝑙) × 𝐵⃗⃗ ⇒  𝐹⃗ = i𝑙𝐵 sin 𝜃  𝑛̂…(1). Here,  𝜃 is the angle of 

magnetic field vector  𝐵⃗⃗ w.r.t. length vector 𝑙 

In the instant case each side of the wire is perpendicular to the magnetic field and hence 𝜃 =
𝜋

2
⇒ sin 𝜃 = 1. 

Thus, rewriting (1) we have  𝐹⃗ = 𝑖𝑙𝐵 𝑛̂ …(2). 



Using the available data and the symmetry in geometry each side of the frame would 

experience a force 𝐹 = 𝐼𝑙𝐵. Using the available data 𝐹 =
2

2
× 0.20 × 0.1 ⇒ 𝑭 = 𝟎. 𝟎𝟐 N.  

But, direction of force on each side can be determined using Flamming’s Left Hand Rule 

by orienting the figure appropriately. Accordingly, forces experienced by sides ab and dc 

would be along (−𝑗̂) i.e. towards left., while force experienced by sides ad  and bc would 

along (−𝑖)̂ i.e. downward. 

Hence, answer is 0.02 N on each wire, on ab and dc towards left and on dc and ab downward. 

I-39 Given system is shown in figure where two strong cylindrical magnets produce a magnetic field 𝐵 = 1.0 T. 

A wire carrying current 𝐼 = 2.0 A is placed perpendicular to the magnetic field intersecting 

axis of the region. It implies that it passes through its center. This lead to length of wire 

intercepting magnetic field is 𝑙 = 2𝑟 = 2 × 0.04m and it is only responsible for the force 

experienced by the wire. 

Magnetic force experienced by a wire as per  Lorentz’s Force Law is mathematically 𝐹⃗ =

(𝑞𝑣⃗) × 𝐵⃗⃗ ⇒ 𝐹⃗ = (𝑖𝑙) × 𝐵⃗⃗ ⇒  𝐹⃗ = i𝑙𝐵 sin 𝜃  𝑛̂…(1). In the instant case each side of the wire 

is perpendicular to the magnetic field and hence 𝜃 =
𝜋

2
⇒ sin 𝜃 = 1. Thus, rewriting (1) we 

have  𝐹⃗ = 𝑖(2𝑟)𝐵 𝑛̂ …(2). 

Using the available data and the symmetry in geometry each side of the frame would experience a force 𝐹 =
𝐼𝑙𝐵. Using the available data 𝐹 = 2.0 × (2 × 0.04) × 1.0 ⇒ 𝑭 = 𝟎. 𝟏𝟔 N is the answer. 

I-40 As per  Lorentz’s Force Law is mathematically 𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒ 𝐹⃗ = (𝐼𝑙) × 𝐵⃗⃗…(1). As given 𝑙 = 𝑙𝑖̂ and  

𝐵⃗⃗ = 𝐵0(𝑖̂ + 𝑗̂ + 𝑘̂). Accordingly, (1) leads to 𝐹⃗ = 𝐼(𝑙𝑖)̂ × 𝐵0(𝑖̂ + 𝑗̂ + 𝑘̂) ⇒ 𝐹⃗ = 𝐵0𝐼𝑙(𝑖̂ × 𝑖̂ + 𝑖̂ × 𝑗̂ + 𝑖̂ × 𝑘̂). 

Applying concepts of vector products 𝐹⃗ = 𝐵0𝐼𝑙(𝑘̂ − 𝑗̂) ⇒ 𝑭 = √𝟐𝑩𝟎𝑰𝒍 is the answer. 

I-41 As per  Lorentz’s Force Law is mathematically 𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒ 𝐹⃗ = (𝐼𝑙) × 𝐵⃗⃗…(1). 

Given system with 3D direction vectors are shown in the figure where length 𝑙 = 0.50m 

of wire PQ on which magnetic force is to be determined 𝑙 = 𝑙𝑗̂ is placed in magnetic field 

𝐵 = 0.20 T is 𝐵⃗⃗ = 𝐵(−𝑘̂). The wire is carrying current 𝐼 = 5.0 A. Using the available 

data 𝐹⃗ = 5.0 × (0.50𝑗̂) × (0.20(−𝑘̂)) ⇒ 𝐹⃗ = −0.50(𝑗̂ × 𝑘̂) ⇒ 𝐹⃗ = 0.50(−𝑖̂) N, i.e. 

0.50 N inward the circuit as shown in the figure is the answer. 

I-42 Given system is shown in the figure alongwith unit dimension vectors. Force 

experience by a current carrying wirer as per Lorentz’s Force Law is 𝐹⃗ = (𝑞𝑣⃗) ×

𝐵⃗⃗ ⇒ 𝐹⃗ = (𝑖𝑙) × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑖𝑙 × 𝐵⃗⃗…(1).   

This system has cylindrical geometry and hence magnetic field, at point of 

consideration, 𝐵⃗⃗ = 𝐵𝑟̂…(2). Here,  𝑟̂ is unit radial vector. Taking an element of 

length ∆𝑙 vectorially 𝑙 = ∆𝑙𝑡̂…(3). Here 𝑡̂ is tangential at the point of  

consideration. Thus, 𝑟̂ ⊥  𝑡̂…(4). Accordingly, (1) can be rewritten ∆𝐹⃗⃗⃗⃗⃗⃗ = 𝑖(∆𝑙𝑡̂) ×

(𝐵𝑟̂) ⇒ ∆𝐹⃗ = ∆𝑙𝑖𝐵(𝑡̂ × 𝑟̂)…(5).  Thus, as per (4), equation (5) can be rewritten as 

∆𝐹⃗ = ∆𝑙𝑖𝐵𝑛̂…(6). In (6), as per geometry of the system considered with unit direction vectors 𝑛̂ → (−𝑖)̂ i.e. 

uni-directionally perpendicularly into the plan of the figure. Therefore, magnitude of the net force on the 

circular wire would lead to 𝐹 = 𝑖𝐵 ∮ 𝑑𝑙 ⇒ 𝐹 = 𝑖𝐵(2𝜋𝑎) ⇒ 𝑭 = 𝟐𝝅𝒂𝒊𝑩.  

Thus, answer is 𝟐𝝅𝒂𝒊𝑩 perpendicularly into the plan of the figure. 



I-43 Given is a circular loop placed parallel to X-Y plane with it center C(0,0. 𝑑), it 

implies OC = 𝑑…(1) and a hypothetical magnetic field at every point on the 

perimeter of the loop  𝐵⃗⃗ = 𝐵0𝑒𝑟…(2), here unit vector is along  the line joining 

origin O and point  of consideration on the perimeter of the loop; in case of 

point P it is 𝑒𝑟||OP. Correspondence of X,Y,Z axes with unit vectors 𝑖,̂ 𝑗̂, 𝑘̂ is 

shown in the figure. 

It is seen that angle 𝛼 is between vectors 𝑘̂ & 𝑒̂𝑟 and is uniform at every point 

on the perimeter of the circular loop. 

Since loop is not a straight wire hence force on the loop can be determined by initially taking force experienced 

by an element length ∆𝑙 = ∆𝜃 × 𝑟 ⇒  ∆𝑙 = ∆𝜃 × 𝑟𝑟̂ ⇒  ∆𝑙 = 𝑟(∆𝜃 × 𝑟̂) ⇒  ∆𝑙 = 𝑟(∆𝜃𝑘̂ × 𝑟̂)…(3). here 𝑟 =

OP  and 𝜃 is along 𝑘̂.  

Accordingly, ∆𝑙 = 𝑟∆𝜃(𝑘̂ × 𝑟̂) ⇒  ∆𝑙 = ∆𝑙(𝑘̂ × 𝑟̂)…(4).  

In the given geometry, 𝐵⃗⃗ = 𝐵 sin 𝛼 𝑟̂ + 𝐵 cos 𝛼 𝑘̂…(5). 

Magnetic force as per Lorentz’s Force Law is ∆𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒ ∆𝐹⃗ = (𝑖∆𝑙) × 𝐵⃗⃗ ⇒ ∆𝐹⃗ = 𝑖(∆𝑙 × 𝐵⃗⃗)…(6). 

Here, geometrically  𝐵⃗⃗ = 𝐵 sin 𝛼 𝑟̂ + 𝐵 cos 𝛼 𝑘̂…(7) 

Combining (4), (5) and (6) we have  ∆𝐹⃗ = 𝑖 (∆𝑙(𝑘̂ × 𝑟̂) × (𝐵 sin 𝛼 𝑟̂ + 𝐵 cos 𝛼 𝑘̂))…(8) 

Eqn. (8) leads to ∆𝐹⃗ = ∆𝑙𝑖𝐵 (sin 𝛼 (𝑘̂ × 𝑟̂ × 𝑟̂) + cos 𝛼 (𝑘̂ × 𝑟̂ × 𝑘̂)),,,(9). This turns out to be problem of 

triple cross product of vectors. Instead considering symmetry of the geometry, as shown in figure, let us 

simplify using (3)  at P  ∆𝑙 = 𝑎∆𝜃(−𝑖)̂ and 𝑟̂ = 𝑗̂. With this, combining (6) and (7), we have – 

∆𝐹⃗ = 𝑖(𝑎∆𝜃(−𝑖)̂) × (𝐵 sin 𝛼 𝑗̂ + 𝐵 cos 𝛼 𝑘̂) ⇒ ∆𝐹⃗ = (−)𝑖𝑎𝐵∆𝜃 (sin 𝛼 (𝑖̂ × 𝑗̂) + cos 𝛼 (𝑖̂ × 𝑘̂)) 

∆𝐹⃗ = (−)𝑖𝑎𝐵∆𝜃(sin 𝛼 𝑘̂ + cos 𝛼 𝑗̂) ⇒ ∆𝐹⃗ = (𝑖𝑎𝐵 sin 𝛼 (−𝑘̂) + 𝑖𝑎𝐵 cos 𝛼 𝑗̂)∆𝜃 

∆𝐹⃗ = ∆𝐹𝑎(−𝑘̂) + ∆𝐹𝑟(−𝑟̂), here ∆𝐹𝑎 = 𝑖𝑎𝐵 sin 𝛼 ∆𝜃 and ∆𝐹𝑟 = 𝑖𝑎𝐵 cos 𝛼 ∆𝜃…(9) 

An observation of the symmetrical geometry t is to be noted ∆𝐹𝑟 component acting along 𝑗̂ → 𝑟̂ would 

mutually cancel with geometrically opposite points leading to 𝐹𝑟 = ∮ ∆𝐹𝑟 = 0…(10).  

In respect of axial force ∆𝐹𝑎 is along (−𝑘̂) i.e. downward and net force over the circular loop would be 𝐹𝑎 =

∮  ∆𝐹𝑎 ⇒ 𝐹𝑎 = 𝑖𝑎𝐵 sin 𝛼 ∮ ∆𝜃 ⇒ 𝐹𝑎 = 2𝜋𝑖𝑎𝐵 sin 𝛼…(11). Going back to the geometry  sin 𝛼 =
𝑎

√𝑎2+𝑑2
 

…(12). Combining (11) and (12), together with the direction discussed above,  net force on the circular loop 

is 𝐹 = 𝐹𝑎 = 2𝜋𝑖𝑎𝐵 ×
𝑎

√𝑎2+𝑑2
⇒ 𝑭 =

𝟐𝝅𝒊𝒂𝟐𝑩

√𝒂𝟐+𝒅𝟐
 downward is the answer. 

N.B.: Though this problem is for a hypothetical magnetic field, yet it is a gives good practice to gain 

proficiency in handling three dimensional vectors. Further, mathematics is an effective analytical tool problem 

can and should be simplified using symmetries wherever possible. 

I-44 Given system is shown with current 𝑖 in anticlockwise direction suspended in a region 

having uniform magnetic field 𝐵⃗⃗ = 𝐵(−𝑖)̂.  For convenience of analysis unit-vectors in 

3D are also shown in the figure. Accordingly, width of rectangular loop QR inside 

magnetic field is 𝑙 = 𝑎𝑗̂, while heights of the loop along PQ and RS inside magnetic 

field is 𝑙1 = 𝑏(−𝑘̂) and  𝑙2 = 𝑏𝑘̂ respectively. Let 𝐹⃗𝑔 = 𝐹𝑔𝑘̂…(1) is the tension 

experienced by the spring when the rectangular loop is suspended in magnetic field, 

without any current flowing through the loop. 

 



Magnetic force as per Lorentz’s Force Law is 𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒  𝐹⃗ = (𝑖𝑙) × 𝐵⃗⃗ ⇒  𝐹⃗ = 𝑖(𝑙 × 𝐵⃗⃗). ...(2). 

Analyzing forces on sides of the loop in the given magnetic field we have- 

𝐹⃗PQ = 𝑖𝑏(−𝑘̂) × 𝐵(−𝑖)̂,  𝐹⃗QR = 𝑖𝑎(𝑗̂) × 𝐵(−𝑖)̂ and 𝐹⃗RS = 𝑖𝑎(𝑘̂) × 𝐵(−𝑖)̂, while 𝐹⃗SP = 0 since this side is 

outside magnetic field. 

Thus net force on the spring due to anticlockwise flow current is 𝐹⃗1 = 𝐹𝑔𝑘̂ + 𝐹⃗PQ + 𝐹⃗QR + 𝐹⃗RS. Combining 

above set of equation we have𝐹⃗1 = 𝐹𝑔𝑘̂ + 𝑖𝑏𝐵(𝑘̂ × 𝑖̂) + 𝑖𝑎𝐵(𝑗̂ × (−𝑖)̂) + 𝑖𝑏𝐵(−𝑘̂ × 𝑖)̂ ⇒ 𝐹⃗1 = (𝐹𝑔 + 𝑖𝑎𝐵)𝑘̂  

…(3). 

From the above analysis, when current in the loop is reversed change force only in side would affect the 

tension and as such 𝐹⃗2 = 𝐹𝑔𝑘̂ + 𝑖𝑎𝐵((−𝑗̂) × (−𝑖)̂) ⇒ 𝐹⃗2 = (𝐹𝑔 − 𝑖𝑎𝐵)𝑘̂…(4) 

Thus change in magnitude of the tension of the spring would ∆𝐹 = |𝐹⃗2 − 𝐹⃗1| ⇒  ∆𝐹 = | (𝐹𝑔 − 𝑖𝑎𝐵) −

(𝐹𝑔 − 𝑖𝑎𝐵)| . It leads to ∆𝑭 = 𝟐𝒊𝒂𝑩 is the answer. 

I-45 An arbitrary loop carrying current 𝐼 has been shown placed perpendicular to the 

magnetic field 𝐵⃗⃗ = 𝐵𝑘̂ ..(1). Magnetic force experience by a conductor as per 

Lorentz’s Force Law is 𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒  𝐹⃗ = (𝑖𝑙) × 𝐵⃗⃗ ⇒  ∆𝐹⃗ = 𝑖(∆𝑙 × 𝐵⃗⃗)…(2). 

A circumscribing rectangular loop with the same current is also shown in the figure. 

In (2) an element of the arbitrary loop can be resolved as ∆𝑙 = ∆𝑥𝑖̂ + ∆𝑦𝑗…̂(3).  

Combining (2) and (3) we have ∆𝐹⃗ = 𝑖 ((∆𝑥𝑖̂ + ∆𝑦𝑗̂) × 𝐵𝑘̂)…(4). This can be 

simplified into  - 

∆𝐹⃗ = 𝑖𝐵 (∆𝑥(𝑖̂ × 𝑘̂) + ∆𝑦(𝑗̂ × 𝑘̂)) ⇒ ∆𝐹⃗ = 𝑖𝐵(∆𝑥(−𝑗̂) + ∆𝑦(𝑖̂))…(5) 

Thus, magnetic force experienced by the loop is  ∮ 𝑑𝑓 = 𝑖𝐵((∮ 𝑑𝑥)(−𝑗̂) + (∮ 𝑑𝑦)(𝑖))…(6). Line integral in 

a closed loop ∮ 𝑑𝑥 = 0 && ∮ 𝑑𝑦 = 0…(7). 

Combining (5), (6) and (7) ∆𝐹 = 0, hence proved. 

I-46 A wire in some arbitrary shape connects two points a and b. For convenience unit 

direction vectors are shown in the figure. Further, for simplicity the wire is 

considered in (𝑖̂ − 𝑗̂) plane and line joining ends a and b of length 𝜆 = 𝜆𝑗…̂(1). Wire 

is considered to be carrying current 𝑖 is taken to be perpendicular to the magnetic 

field 𝐵⃗⃗ = 𝐵𝑘̂ ..(2), as shown in the figure. 

 Magnetic force experience by a conductor as per Lorentz’s Force Law is ∆𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒  𝐹⃗ = (𝑖∆𝑙⃗⃗⃗⃗ ) ×

𝐵⃗⃗ ⇒  ∆𝐹⃗ = 𝑖(∆𝑙 × 𝐵⃗⃗)…(2). 

An element of the arbitrary loop can be resolved as ∆𝑙 = ∆𝑥𝑖̂ + ∆𝑦𝑗̂…(3).  Combining (2) and (3) we have 

∆𝐹⃗ = 𝑖 ((∆𝑥𝑖̂ + ∆𝑦𝑗̂) × 𝐵𝑘̂)…(4). This can be simplified into  - 

∆𝐹⃗ = 𝑖𝐵 (∆𝑥(𝑖̂ × 𝑘̂) + ∆𝑦(𝑗̂ × 𝑘̂)) ⇒ ∆𝐹⃗ = 𝑖𝐵(∆𝑥(−𝑗̂) + ∆𝑦(𝑖̂))…(5). Hence, total magnetic force on the 

wire is 𝐹⃗ = 𝑖𝐵 ((∫ 𝑑𝑥
0

0
) (−𝑗̂) + (∫ 𝑑𝑦

𝑏

𝑎
) 𝑖̂) ⇒ 𝐹 = 𝑖𝜆𝐵. While, actual length of wire is 𝑙 = ∫ 𝑑𝑙

𝑙

0
 . As per 

Euclid’s postulates, actual length of line 𝑙 ≥ 𝜆 shortest distance 𝜆 joining the two points. Thus, magnetic 

force on a current carrying wire between two points, placed in magnetic field, is independent of the 

length of the wire. Hence proved.  



I-47 A semicircular wire has two ends a and b. with radius of semicircle 𝑅 = 0.05m. 

For convenience unit direction vectors are shown in the figure. Further, for 

simplicity the wire is considered in (𝑖̂ − 𝑗̂) plane and line joining ends a and b of 

length 𝜆 = 2𝑅𝑗̂…(1). Wire is considered to be carrying current 𝐼 = 5.0A is taken 

to be perpendicular to the magnetic field 𝐵⃗⃗ = 𝐵𝑘̂ ..(2), as shown in the figure. 

Magnetic force experience by a conductor as per Lorentz’s Force Law is ∆𝐹⃗ =

(𝑞𝑣⃗) × 𝐵⃗⃗ ⇒  𝐹⃗ = (𝑖∆𝑙⃗⃗⃗⃗ ) × 𝐵⃗⃗ ⇒  ∆𝐹⃗ = 𝑖(∆𝑙 × 𝐵⃗⃗)…(2). 

An element of the arbitrary loop can be resolved as ∆𝑙 = ∆𝑥𝑖̂ + ∆𝑦𝑗̂…(3).  Combining (2) and (3) we have 

∆𝐹⃗ = 𝑖 ((∆𝑥𝑖̂ + ∆𝑦𝑗̂) × 𝐵𝑘̂)…(4). This can be simplified into  - 

∆𝐹⃗ = 𝑖𝐵 (∆𝑥(𝑖̂ × 𝑘̂) + ∆𝑦(𝑗̂ × 𝑘̂)) ⇒ ∆𝐹⃗ = 𝑖𝐵(∆𝑥(−𝑗̂) + ∆𝑦(𝑖̂))…(5). Hence, total magnetic force on the 

wire is 𝐹⃗ = 𝑖𝐵 ((∫ 𝑑𝑥
0

0
) (−𝑗̂) + (∫ 𝑑𝑦

2𝑅

0
) 𝑖)̂ ⇒ 𝐹⃗ = 2𝐼𝑅𝐵𝑖̂. …(6). While, actual length of wire is 𝑙 = ∫ 𝑑𝑙

𝑙

0
 . 

As per Euclid’s postulates, actual length of semicircular arc 𝑙 ≥ 2𝑅, the latter is the shortest distance joining 

the two points. Using the available data 𝐹⃗ = 2 × 5.0 × 0.05 × 0.50𝑖̂ ⇒ 𝑭 = 𝟎. 𝟐𝟓 is the answer. 

I-48 A wire in shape of a curve defined by  𝑦 =

sin (
2𝜋

𝜆
𝑥)…(1) is placed in X-Y plane and magnetic field 

𝐵⃗⃗ = 𝐵𝑘̂…(2) is Z-direction. For convenience  direction 

vectors 𝑖̂ → X − axis, 𝑗̂ → Y − axis, 𝑘̂ → Z − axis and 

distance Ob along X-axis corresponds to 𝜆𝑖̂. Wire is 

carrying current 𝐼.  

Magnetic force experience by a conductor as per Lorentz’s Force Law is ∆𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒  𝐹⃗ = (𝑖∆𝑙⃗⃗⃗⃗ ) ×

𝐵⃗⃗ ⇒  ∆𝐹⃗ = 𝑖(∆𝑙 × 𝐵⃗⃗)…(2). 

An element of the arbitrary loop can be resolved as ∆𝑙 = ∆𝑥𝑖̂ + ∆𝑦𝑗̂…(3).  Combining (2) and (3) we have 

∆𝐹⃗ = 𝑖 ((∆𝑥𝑖̂ + ∆𝑦𝑗̂) × 𝐵𝑘̂)…(4). This can be simplified into  - 

∆𝐹⃗ = 𝑖𝐵 (∆𝑥(𝑖̂ × 𝑘̂) + ∆𝑦(𝑗̂ × 𝑘̂)) ⇒ ∆𝐹⃗ = 𝑖𝐵(∆𝑥(−𝑗̂) + ∆𝑦(𝑖̂))…(5). Hence, total magnetic force on the 

wire is 𝐹⃗ = 𝑖𝐵 ((∫ 𝑑𝑥
𝜆

0
) (−𝑗̂) + (∫ 𝑑𝑦

0

0
) 𝑖̂) ⇒ 𝐹⃗ = 𝐼𝜆𝐵(−𝑗̂). …(6). Thus, magnitude of the magnetic force 

experienced by the wire is 𝑰𝝀𝑩 is the answer. 

I-49 Given system is shown in the figure. A rigid wires is shaped such that it has two 

straight and parallel portions of equal  lengths cb and cd 𝑙𝑎𝑏 = 𝑙(−𝑖)…(1), and 

𝑙𝑐𝑑 = 𝑙𝑖…(2) respectively. The length vectors, though parallel are taken in direction 

of currents and unit-direction vectors, as shown in the figure. These two portions 

are connected through a portion bc  in semicircular shape of radius 𝑅. Vectorially, 

a small length of the arc ∆𝑙𝑏𝑐 = 𝑅𝑟̂ × ∆𝜃(−𝑘̂)…(3); here 𝑟̂ unit-direction vector of 

the element ∆𝑙𝑏𝑐and unit-direction vector of ∆𝜃 is taken along (−𝑘̂) since current 

in the semicircular portion is in clockwise direction. 

The wire is taken to be on (𝑖̂ − 𝑗̂) plane while magnetic field, as shown in the figure, 

is 𝐵⃗⃗ = 𝐵𝑘̂…(4).  

Magnetic force experience by a conductor as per Lorentz’s Force Law is ∆𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒  𝐹⃗ = (𝑖∆𝑙⃗⃗⃗⃗ ) ×

𝐵⃗⃗ ⇒  ∆𝐹⃗ = 𝑖(∆𝑙 × 𝐵𝑘̂) ⇒  ∆𝐹⃗ = 𝑖𝐵(𝑙 × 𝑘̂)…(5). 

Combining above equations it leads to – 



𝐹⃗ = 𝐹⃗𝑎𝑏 + 𝐹⃗𝑏𝑐 + 𝐹⃗𝑐𝑎 

𝐹⃗ = 𝐼𝐵 (𝑙(−𝑖) × 𝐵𝑘̂ + ∫ (𝑅𝑟̂ × 𝑑𝜃(−𝑘̂)) × 𝑘̂
0

𝜋

+ 𝑙(𝑖) × 𝑘̂) 

𝐹⃗ = (−)𝐼𝑅𝐵 (∫ (𝑙𝑑𝜃) × 𝑘̂
0

𝜋
) ⇒ 𝐹⃗ = (−)𝐼𝑅𝐵 (∫ (𝑙𝑑𝜃) × 𝑘̂

0

𝜋
); here unit vector  

𝑙 = cos(900 − 𝜃) 𝑗̂ − sin(900 − 𝜃) 𝑖.̂ 

Thus, 𝐹⃗ = (−)𝐼𝑅𝐵 (∫ ((sin 𝜃 𝑗̂ − cos 𝜃 𝑖̂)𝑑𝜃) × 𝑘̂
0

𝜋
). It leads to - 

 𝐹⃗ = (−)𝐼𝑅𝐵 (∫ (((𝑗̂ × 𝑘̂) sin 𝜃 − (𝑖̂ × 𝑘̂) cos 𝜃) 𝑑𝜃)
0

𝜋

) ⇒ 𝐹⃗ = (−)𝐼𝑅𝐵 (∫ ((𝑖̂ sin 𝜃 + 𝑗̂ cos 𝜃 𝑖̂)𝑑𝜃)
0

𝜋

) 

𝐹⃗ = (−)𝐼𝑅𝐵([𝑖̂sin 𝜃 − 𝑗̂ cos 𝜃]𝜋
0 )𝑖̂ ⇒ 𝐹⃗ = 𝐼𝑅𝑅[cos 0 − cos 𝜋]𝑖̂ ⇒ 𝐹⃗ = 2𝐼𝑅𝐵𝑖̂, Thus, force is  𝟐𝑰𝑹𝑩 

downward is the answer. 

N.B.: It is an example of proficiency in analysis using mathematics as an unambiguous tool of clarity. 

I-50 Given is a straight wire, placed horizontally, has mass 𝑚 = 10mg⇒ 𝑚 = 10−5kg and 

length 𝑙 = 1.0 m, carries a current 𝐼 = 2.0 A.  It is required to find magnetic field required 

in the region such that magnetic force on the wire balances its weight. 

For convenience of analysis 3D unit vectors are shown in the figure, and wire is so placed 

on a parallel to (𝑖̂ − 𝑗̂) plane and oriented along 𝑗̂ such that length vector is 𝑙 = 𝑙𝑗̂…(1).\  

As per Lorentz’s Force Law magnetic force experience by a conductor is ∆𝐹⃗ = (𝑞𝑣) × 𝐵⃗⃗ ⇒

 𝐹⃗ = (𝑖𝑙) × 𝐵⃗⃗ ⇒  𝐹⃗ = 𝑖(𝑙 × 𝐵𝑘̂) ⇒  𝐹⃗ = 𝑖𝐵(𝑙𝑗̂ × 𝐵̂) ⇒  𝐹⃗ = 𝑖𝐵𝑙(𝑗̂ × 𝐵̂)…(2). 

Gravitational force is vertically downward, therefore gravitational force 𝐹⃗𝑔 = 𝑚𝑔(−𝑘̂)…(3). Taking 𝑔 = 10 

m.s2. 

Thus, using available data and equation of equilibrium  would be 𝐹⃗ + 𝐹⃗𝑔 = 0 ⇒ 𝑖𝑙𝐵(𝑗̂ × 𝐵̂) = −𝑚𝑔(−𝑘̂). It 

leads to 2.0 × 1.0 × 𝐵(𝑗̂ × 𝐵̂) = 10−5 × 10𝑘̂ ⇒ 𝐵(𝑗̂ × 𝐵̂) =
0.10

2
𝑘̂ ⇒ 𝐵 sin 𝜃 𝑛̂ = 5 × 10−5𝑘̂. Here, 𝑛̂ is the 

unit vector perpendicular to the plane containing vector (𝑗̂ − 𝐵̂) and in this case 𝜃 is the angle of unit vector 

𝐵̂ and unit vector 𝑗̂. Since, vectorially 𝑛̂ → 𝑘̂ ⇒ 𝐵 =
5×10−5

sin 𝜃
. Hence, minimum value of  𝐵 depends upon 

maximum value on sin 𝜃 = 1 ⇒ 𝑩𝒎𝒊𝒏 = 𝟓 × 𝟏𝟎−𝟓T is the answer. 

I-51 Given system is shown in the figure and with given data ∆OPQ is 

equilateral of side 𝑙 = 0.20 m. For convenience 3D unit vectors are 

shown in the figure. Hence,2𝑇 sin
𝜋

3
= 𝐹 ⇒ 2𝑇 (

√3

2
) = 𝐹 ⇒ 𝑇 =

𝐹

√3
.  

Given that mass of wire 𝑚 = 0.200 kg and 𝐵⃗⃗ = 0.500𝑖̂ T, and 

acceleration due to gravity is not specified it’s magnitude is taken as 

𝑔 = 10 m/s2. It leads to  𝑔⃗ = 10(−𝑘̂) ms2. Both the parts are solved 

below – 

Part (a): When switch is open 𝐹⃗ = 𝐹⃗𝑔 = 𝑚𝑔⃗; using given data 𝐹⃗ =

0.200 × 10(𝑖)̂ ⇒ 𝐹 = 2.00 N⇒ 𝑇 =
2.00

√3
⇒ 𝑇 = 1.15 N or 𝑇 = 1.2 N 

Part (b): When switch is closed net force on wire would be 𝐹⃗ = 𝐹⃗𝑔 + 𝐹⃗𝑚. Here, 𝐹⃗𝑚 = (𝑖𝑙) × 𝐵⃗⃗ ⇒  𝐹⃗𝑚 =

𝑖(𝑙𝑗̂ × 𝐵𝑘̂) ⇒ 𝐹⃗𝑚 = 𝑖𝑙𝐵𝑖̂. Thus, using available data  𝐹⃗ = 2.00𝑖̂ + 2.0 × 0.20 × 0.500𝑖̂ ⇒ 𝐹⃗ =

2.2𝑖̂ N. Hence, tension in the strings would be 𝑇 =
2.2

√3
⇒ 𝑇 = 1.3 N. 

Hence, answers are (a) 𝟏. 𝟐 N and (b) 𝟏. 𝟑 N. 



N.B.: Reporting of answers is using principle of significant digits. 

I-52 For convenience of analysis unit vectors in 3D asre 

shown in the figure. Given system is placed in 

(𝑖̂ − 𝑗̂) plane and magnetic field is 𝐵⃗⃗ = 𝐵𝑘̂…(1). At 

𝑡 = 0, switch S is closed wire PQ is at ends AB of the 

two strips AC||BD clamped at a searation 𝑙 = 𝑏(−𝑖)̂. 

It will establish a current 𝑖  in the circuit as shown in 

the figure. This current flows in portion BA of the 

wires  from B to A whose length is 𝑙 = 𝑏…(2), i.e. separation between the two strips ACand BD, each of 

length 𝐿 that are clamped. The strips AC and BD are firction less, but while after traversing the length  

As per Lorentz’s Force Law current through wire length 𝑙 will produce a amgnetic force 𝐹⃗ = 𝑖𝑙 × 𝐵⃗⃗. Using 

the avaliable data 𝐹⃗ = 𝑖 (𝑏(−𝑖)̂ × (𝐵𝑘̂)) ⇒ 𝐹⃗ = 𝑖𝑏𝐵 ((−)𝑖̂ × 𝑘̂) ⇒ 𝐹⃗ = 𝑖𝑏𝐵𝑗…̂(3). Thus wire of mass 𝑚 

would experience a force and acceleration 𝐹 = 𝑖𝑏𝐵 ⇒ 𝑎 =
𝐹

𝑚
⇒ 𝑎 =

𝑖𝑏𝐵

𝑚
…(4) along right side i,e, toward 

ends C-D.  

Strips are of hiher crossection and hence considered to be of negligible resistance. Therefore, while wire under 

amgnetic force would slip along the length 𝐿 of the strip there would be no change of current and consequently 

force 𝐹 and acceleration 𝑎  would remain constant. 

Thus velocity attained by the wire, starting from state of rest frpm position PQ with 𝑢 = 0, as it reaches 

position P’Q’ and touches the floor with a velocity 𝑣, as per 3rd equation of motion, 𝑣2 = 𝑢2 + 2𝑎𝑠…(5). It, 

wiith available data, leads to  𝑣2 = 0 + 2 (
𝑖𝑏𝐵

𝑚
) 𝐿 ⇒ 𝑣2 =

2𝑖𝑏𝐵𝐿

𝑚
…(6). 

As soon as wire touches ground having coefficient of friction 𝜇, it experiences a frictional force 𝑓 = −𝜇𝑚𝑔 

…(7), here is acceleration due to gravity. Thus wire would experience a frictional𝑎𝑓 =
𝑓

𝑚
⇒ 𝑎𝑓 = (−)

𝜇𝑚𝑔

𝑚
. 

It leads to 𝑎𝑓 = (−)𝜇𝑔…(8). 

Again applying (5), in this case with 𝑢2 = 𝑣2 =
2𝑖𝑏𝐵𝐿

𝑚
,  𝑣2 = 0 and 𝑎𝑓 = (−)𝜇𝑔, distance 𝑠 = 𝑥 travelled by 

the wire, as shown in the figure, until it stops is 0 =
2𝑖𝑏𝐵𝐿

𝑚
+ 2((−)𝜇𝑔)𝑥 ⇒ 𝑥 =

2𝑖𝑏𝐵𝐿

𝑚

2𝜇𝑔
⇒ 𝒙 =

𝒊𝒃𝑩𝑳

𝝁𝒎𝒈
 is the 

answer. 

N.B.: This problems integrates electromagnetism with mechanics. 

I-53 For convenience of analysis unit vectors in 3D asre shown in the 

figure. Given system is placed in (𝑖̂ − 𝑗̂) plane and magnetic field is 

𝐵⃗⃗ = 8.00 × 10−1(−𝑘̂)T…(1). Two rails PQ||RS having a 

separation 𝑙 = 4.9 × 10−2(−𝑖)̂ complete the circuit through a metal 

wire LM of mass 𝑚 = 1.0 × 10−2 𝑘𝑔. Resistance of the circuit 

slowly decreased and when it is 𝑟 = 20.0𝛺 the wire starts sliding on 

the rail.  

As per Lorentz’s Force Law current through wire length 𝑙 will 

produce a amgnetic force 𝐹⃗ = 𝑖𝑙 × 𝐵⃗⃗. Using the avaliable data 𝐹⃗ = 𝑖 (𝑙(𝑖)̂ × 𝐵(−𝑘̂)) ⇒ 𝐹⃗ = 𝑖𝑙𝐵(𝑖̂ ×

(−)𝑘̂) ⇒ 𝐹⃗ = 𝑖𝑙𝐵𝑗̂…(3). Thus, wire would experience a force and acceleration 𝐹 = 𝑖𝑙𝐵…(4) along right side 

i.e. toward ends Q-S.  

As per Ohm’s law slipping of wire does not take place at 𝑖 <
𝑣

𝑟
 here voltage of source 

is 𝑣 = 6V. It implies that there is friction between rails and wire and at limiting 

condition 𝑖 =
𝑣

𝑟
 …(5), the frictional force is in direction opposite to the magnetic force 

in (4) is 𝑓 = 𝜇𝑚𝑔…(6), as shown in the figure. Here, acceleration due to gravity is taken as 𝑔 = 10 m/s2.  



Until limiting condition is reaheed there is equilibrium of forces such that 𝐹 = 𝑓. In this equations (4) and (5) 

are combined, and with the avalable data 𝑖𝑙𝐵 = 𝜇𝑚𝑔 ⇒ 𝜇 =
(

𝑣

𝑟
)𝑙𝐵

𝑚𝑔
⇒ 𝜇 =

6×(4.9×10−2)×(8.00×10−1)

(1.0×10−2)×10×20.0
. It solves 

to 𝜇 = 0.117 A. Using principle of significant digits 𝝁 = 𝟎. 𝟏 is the answer. 

I-54 For convenience of analysis unit vectors in 3D asre shown in the figure. Given system 

is placed in (𝑖̂ − 𝑗̂) plane and space has a magnetic field is 𝐵⃗⃗. Its direction is not 

defined. A straight wire LM  of length 𝑙 = 𝑙𝑖̂  and mass 𝑚 is placed on two plastic 

rails, shown in the figure as PQ||RS. The wire carries a cirrent 𝑖 from L to M. 

As per Lorentz’s Force Law current through wire length 𝑙 will produce a amgnetic 

force 𝐹⃗ = 𝑖𝑙 × 𝐵⃗⃗. Using the avaliable data 𝐹⃗ = 𝑖 (𝑙(𝑖)̂ × 𝐵(𝑏̂)) ⇒ 𝐹⃗ = 𝑖𝑙𝐵(𝑖̂ × 𝑏̂) ⇒

𝐹⃗ = 𝑖𝑙𝐵 sin 𝜃 𝑛̂…(1). Since, wire is to slide on rails along 𝑗̂ direction, minimum force must be along such that 

𝑛̂ →  𝑗̂ sothat angle between these two unit vectors 𝛼 = 0 ⇒ cos 𝛼 = 1.  

Frictional force experienced by the wire, in direction opposite to the magnetic force 

tending to cause slipping is 𝑓 = 𝜇𝑚𝑔…(2), as shown in the figure. Here, 𝑔 is 

acceleration due to gravity. 

At limiting condition is reaheed there is equilibrium of forces such that 𝐹 = 𝑓. 

Accordingly, combining (1) and (2), we have 𝑖𝑙𝐵 sin 𝜃 = 𝜇𝑚𝑔 ⇒ 𝐵 =

(
𝜇𝑚𝑔

𝑖𝑙
)

1

sin 𝜃
….(3). It implies that 𝐵 ∝

1

sin 𝜃
. Thus, for minimum vale of 𝐵, as dsired, it would occur when 

|sin 𝜃|𝑚𝑎𝑥 = 1…(4).  

Combining (3) and (4), 𝑩𝒎𝒊𝒏 =
𝝁𝒎𝒈

𝒊𝒍
 is the answer. 

I-55 As per Lorentz’s Force Law current through wire length 𝑙 will produce a amgnetic 

force 𝐹⃗ = 𝑖𝑙 × 𝐵⃗⃗. In this case a small length of the circular 

loop ∆𝑙 = ∆𝑙𝑡̂ and magnetic field 𝐵⃗⃗ = 𝐵(−𝑘̂). Accordingly,  

∆𝐹⃗ = 𝑖 ((∆𝑙𝑡̂) × 𝐵(−𝑘̂))…(1). Here, unit tangent vector for  

∆𝑙 is 𝑡̂  and is ┴ to 𝐵⃗⃗. Hence, asper Flemmings Left Hand 

Rule, as shown in the figure, is ∆𝐹⃗ = 𝑖∆𝑙𝐵(−𝑟̂)…(2). Since, 

𝑟̂ is unit vector along radius i.e. ouward and hence magnetic 

force along  (−𝑟̂) toward the center of the cirle. Thus, answer of part (a) wire is 

𝒊∆𝒍𝑩 towards the center. 

Part (b) requires to determine fore of compression on wire and is being analyzed with 

priniples of statics of forces. As determined in part (a) force on small part of the circualr 

wire which subtends an angle 𝜃 at its center O is ∆𝐹 = 𝑖∆𝑙𝐵 towards the center as per 

(2). This force is result of tensile tension 𝑇 experienced by the small part of the wire. 

Geometrically tension 𝑇 is at an angle (900 −
𝜃

2
) with the force ∆𝐹. Therefore, 

vectorially ∆𝐹 = 2𝑇 cos (900 −
𝜃

2
) ⇒ ∆𝐹 = 2𝑇 sin

𝜃

2
….(3) 

Since, ∆𝑙 ≪⇒ 𝜃 → 0 ⇒ sin 𝜃 → 𝜃. Therefore, sin
𝜃

2
→

𝜃

2
…(4). It leads to ∆𝐹 = 2𝑇

𝜃

2
⇒ ∆𝐹 = 𝑇𝜃…(5). 

Combining (2) and (5), 𝑖∆𝑙𝐵 = 𝑇𝜃. Since length of the small part is ∆𝑙 = 𝑎𝜃. It leads to 𝑇𝜃 = 𝑖(𝑎𝜃)𝐵. It 

leads to 𝑻 = 𝒊𝒂𝑩 is answer of the part (b). 

N.B.: It is the application of principle of Hoop Stress, in mechanics, into electromagneti𝑡̂sm. 

I-56 Tension in the wire for the system is determined as 𝑇 = 𝑖𝑎𝐵 …(1), in illustration I-55. 



As per mechanics, Young Modulus 𝑌 =
𝑠𝑡𝑟𝑒𝑠𝑠

𝑠𝑡𝑟𝑎𝑖𝑛
⇒ 𝑌 =

𝑇

𝐴
∆𝑝

𝑝

⇒ 𝑌 =
𝑇𝑝

𝐴∆𝑝
⇒ ∆𝑝 =

𝑇𝑝

𝐴𝑌
…(2) . Here, area of cross-

section of the wire forming the circular loop 𝐴 = 𝜋𝑟2…(3), and perimeter of the circular loop is 𝑝 = 2𝜋𝑎…(4) 

Accordingly,  ∆𝑝 =
(𝑖𝑎𝐵)(2𝜋𝑎)

(𝜋𝑟2)𝑌
⇒ ∆𝑝 =

2𝑖𝑎2𝐵

𝑟2𝑌
…(5) 

Taking derivative of (4), ∆𝑝 = 2𝜋∆𝑎…(6). Combining (5) and (6) we have 2𝜋∆𝑎 =
2𝑖𝑎2𝐵

𝑟2𝑌
⇒ ∆𝒂 =

𝒊𝒂𝟐𝑩

𝝅𝒓𝟐𝒀
 is 

increase in radius, is the answer. 

I-57 Given that a square loop ABCD with side length 𝑙 is placed in X-Y plane 

corresponding to plane 𝑖̂ − 𝑗̂ in vector space such vettex A is at origin, and  sides 

AB is along Y-axis and AD alons –Y axishaving magnetic field expressed as  

𝐵⃗⃗ = 𝐵0 (1 +
𝑥

𝑙
) 𝑘̂…(1). Vectorially, magnetic field unidirectional along 𝑘̂ but it 

is non-uniform and its depnedent upon value of 𝑥  at each point on the plane of 

the loop. 

Length vector of each side 𝑙AB = 𝑙𝑗̂, 𝑙BC = 𝑙(−𝑖)̂, 𝑙CD = 𝑙(−𝑗̂) and 𝑙𝐴𝐵 = 𝑙DA = 𝑙𝑖̂…(2). 

As per Lorentz’s Force Law current through wire length 𝑙 will produce a amgnetic force 𝐹⃗ = 𝑖𝑙 × 𝐵⃗⃗…(3) 

Therefore, net force experienced by a small length ∆𝑙 of each side of the loopthe loop carrying current 𝑖, as 

per (1), (2) and (3) would be, 𝐹⃗ = 𝐹⃗AB + 𝐹⃗BC + 𝐹⃗CD + 𝐹⃗DA…(4) 

Taking each component in (4) separately – 

𝑭⃗⃗⃗𝐀𝐁|
𝒙=𝟎

= 𝑖(𝑙AB × 𝐵⃗⃗) ⇒ 𝐹⃗AB = 𝑖 (𝑙𝑗̂ × 𝐵0 (1 +
𝑥

𝑙
) 𝑘̂)|

𝑥=0
⇒ 𝐹⃗AB = 𝑖𝑙𝐵0(𝑗̂ × 𝑘̂) ⇒ 𝐹⃗AB = 𝒊𝒍𝑩𝟎𝒊̂…(5) 

𝑭⃗⃗⃗𝐁𝐂 = 𝑖(𝑙BC × 𝐵⃗⃗) ⇒ 𝐹⃗BC = 𝑖𝐵0 (∫ (1 +
𝑥

𝑙
) 𝑑𝑥

𝑖

0

) (−𝑖)̂ × 𝑘̂ ⇒ 𝐹⃗BC = 𝑖𝐵0 (∫ (1 +
𝑥

𝑙
) 𝑑𝑥

𝑖

0

) 𝑗̂ 

⇒ 𝐹⃗BC = 𝑖𝐵0 [𝑥 +
𝑥2

2𝑙
]

0

𝑙

𝑗̂ ⇒ 𝐹⃗BC = 𝑖𝐵0 [𝑙 +
𝑙2

2𝑙
] 𝑗̂ ⇒ 𝐹⃗BC = 𝑖𝐵0 [𝑙 +

𝑙

2
] 𝑗̂ ⇒ 𝐹⃗BC =

𝟑

𝟐
𝒊𝒍𝑩𝟎𝑗…̂(6) 

𝑭⃗⃗⃗𝐂𝐃|
𝒙=−𝒍

= 𝑖(𝑙CD × 𝐵⃗⃗) ⇒ 𝐹⃗CD = 𝑖 (𝑙(−𝑗̂) × 𝐵0 (1 +
−𝑙

𝑙
) 𝑘̂)|

𝑥=0
⇒ 𝐹⃗CD = (−)𝑖𝑙𝐵0(−)𝑖̂ ⇒ 𝐹⃗CD = 𝟎 …(7) 

𝐹⃗DA = 𝑖(𝑙DA × 𝐵⃗⃗) ⇒ 𝐹⃗DA = 𝑖𝐵0 (∫ (1 +
𝑥

𝑙
) 𝑑𝑥

𝑖

0

) (𝑖)̂ × 𝑘̂ ⇒ 𝐹⃗DA = 𝑖𝐵0 (∫ (1 +
𝑥

𝑙
) 𝑑𝑥

𝑖

0

) (−𝑗̂) 

⇒ 𝐹⃗DA = 𝑖𝐵0 [𝑥 +
𝑥2

2𝑙
]

0

𝑙

(−𝑗̂) ⇒ 𝐹⃗DA = 𝑖𝐵0 [𝑙 +
𝑙2

2𝑙
] (−𝑗̂) ⇒ 𝐹⃗DA = 𝑖𝐵0 [𝑙 +

𝑙

2
] (−𝑗̂) 

⇒ 𝐹⃗DA = (−)
𝟑

𝟐
𝒊𝒍𝑩𝟎𝒋̂…(8) 

Combining (4)…(8), 𝐹⃗ =  𝑖𝑙𝐵0𝑖̂ +
3

2
𝑖𝑙𝐵0𝑗̂ + 0(−)

3

2
𝑖𝑙𝐵0𝑗̂ ⇒ 𝐹⃗ =  𝑖𝑙𝐵0𝑖̂. Thus, magnitude of the force is 𝒊𝒍𝑩𝟎 

is the answer. 

I-58 For convenience 3D vectors are shown in the figure. Accordingly, orientations are such 

that conductor of length 𝑙 = 𝑙𝑖̂, is placed in magnetic field 𝐵⃗⃗ = 𝐵(−𝑘̂) is moving with a 

velocity 𝑣⃗ = 𝑣𝑗.̂ Charge of an electron is 𝑞 = −𝑒. 

Magnetic force on a charge, as per Lorentz’s Force Law, is  𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(1).  

Each part of the problem is being solved separately – 

Part (a): Average magnetic force on each electron as per (1) with the available data is 𝐹⃗𝑚 = (−𝑒)𝑣𝑗̂ ×

𝐵(−𝑘̂) ⇒ 𝐹⃗𝑚 = 𝑒𝑣𝐵(𝑗̂ × 𝑘̂) ⇒ 𝐹⃗𝑚 = 𝑒𝑣𝐵𝑖̂…(2). Thus force is 𝒆𝒗𝑩 along X-axis is answer of the 

part (a). 



Part (b): To stop the flow electric field 𝐸 that would develop inside the conductor that would stop 

redistribution of electrons should develop a force 𝐹⃗𝑒 = 𝑞𝐸⃗⃗ ⇒ 𝐹⃗𝑒 = (−𝑒)𝐸⃗⃗…(3), such electrns are 

in equilibrium. Accordingly, 𝐹⃗𝑚 + 𝐹⃗𝑒 = 0…(4). Combining (2)…(4) we have 𝑒𝑣𝐵𝑖̂ + (−𝑒)𝐸⃗⃗ = 0. 

It leads to 𝑒𝐸⃗⃗ = 𝑒𝑣𝐵𝑖̂ ⇒ 𝐸 = 𝑣𝐵…(5) along 𝑖 ̂is the answer of part (b). 

Part (c): Potential difference 𝑉  along a wire is 𝑉 = 𝑙𝐸 ⇒ 𝑉 = 𝒍𝒗𝑩 is the answer of part (c). 

Thus, answers are (a) 𝒆𝒗𝑩,   (b) 𝒗𝑩,   (c) 𝒍𝒗𝑩 

I-59 For convenience 3D vectors are shown in the figure. Accordingly, orientations are such 

that silver strip of length say 𝑙 = 𝑙𝑗̂ and area of cross-section 𝐴 is placed in magnetic 

field 𝐵⃗⃗ = 𝐵(−𝑘̂). The strip having number of electrons per unit volume 𝑛 is carrying a 

current 𝑖 along its length i.e. 𝑗̂. Charge of an electron is 𝑞 = −𝑒. 

Solving each part – 

Part (a): Current in a conductor is 𝑖 =
𝑑𝑄

𝑑𝑡
⇒  𝑖 =

𝑑(𝑛𝑉𝑞)

𝑑𝑡
⇒  𝑖 =

𝑑(𝑛𝐴𝑙(−𝑒))

𝑑𝑡
⇒ | 𝑖| = 𝑛𝐴𝑒

𝑑

𝑑𝑡
𝑙 ⇒ | 𝑖| = 𝑛𝐴𝑒𝑣. 

Here, 𝑣 =
𝑑

𝑑𝑡
𝑑  is the drift velocity of free-electrons. Hence, 𝒗 =

𝒊

𝒏𝑨𝒆
 is the answer of part (a). 

Part (b): Since charge carriers are electrons having (-) ve charge, hence drift velocity of electrons is opposite 

to the direction of current. Accordingly, 𝑣⃗ = (−)
𝑖

𝑛𝐴𝑒
𝑗̂….(1) 

Magnetic force on a charge, as per Lorentz’s Force Law, is  𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(2). Combining (1) and 

(2) magnetic force of free electrons is  𝐹⃗𝑚𝑒 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚𝑒 = (−𝑒)(−)
𝑖

𝑛𝐴𝑒
𝑗̂ × 𝐵(−𝑘̂). It leads to 

𝐹⃗𝑚𝑒 = (−)
𝑖𝑒𝐵

𝑛𝐴𝑒
𝑗̂ × 𝑘̂ ⇒ 𝐹⃗𝑚𝑒 =

𝑖𝐵

𝑛𝐴
(−𝑖)̂…(3) Thus, magnitude of magnetic force experienced by free 

electron is 
𝒊𝑩

𝒏𝑨
  upward is the answer of part (b). 

Part (c): Force on a charge in an electric field 𝐸⃗⃗ is 𝐹⃗𝑒 = 𝑞𝐸⃗⃗ ⇒ 𝐸⃗⃗ =
𝐹⃗𝑒

𝑞
…(4). In the instant case charges are 

electrons and and force is 𝐹⃗𝑒 = 𝐹⃗𝑚𝑒. Hence combining (3) and (4) we have 𝐸⃗⃗ =
𝑖𝐵

𝑛𝐴
(−𝑖̂)

(−𝑒)
⇒ 𝐸⃗⃗ =

𝑖𝐵

𝑛𝐴𝑒
𝑖̂ 

…(5). Thus, answer of part (c) is 
𝒊𝑩

𝒏𝑨𝒆
 

Part (d): It is required to determine transerse emf 𝑉w, as per Hall Effect, produced along the width  of the 

conductor, when a current-carrying wire is placed in a magnetic field. Let width of the silver strip 

along 𝑖 ̂i.e. direction of is 𝑑, 𝑉w = 𝐸𝑑, here magnitude of 𝐸⃗⃗ is obtained at (5). Accordingly, we have 

𝑉w = (
𝑖𝐵

𝑛𝐴𝑒
) 𝑑 ⇒ 𝑉w =

𝒊𝑩𝒅

𝒏𝑨𝒆
 is the answer of part (d). 

Thus, answers are (a) 
𝒊

𝑨𝒏𝒆
      (b) 

𝒊𝑩

𝑨𝒏
 upward      (c) 

𝒊𝑩

𝒏𝑨𝒆
       (d) 

𝒊𝑩𝒅

𝑨𝒏𝒆
. 

I-60 Given that a particle carrying charge 𝑞 = 2.0 × 10−8 C and mass 𝑚 = 2.0 × 10−13kg is projected with a 

velocity with a specified magnitude taken vectorially 𝑣⃗ = 2.0 × 103𝑗 ̂m/s is perpenducularly projected in a 

uniform magnetic field of specified magnitude is taken vectorially 𝐵⃗⃗ = 0.10𝑘̂ T. 

In the given syetem the charged particle will experience a magnetic force as per Lorentz’s Force Law, which 

is  𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(1). Using the available data,  𝐹⃗ = (2.0 × 10−8)(2.0 × 103𝑗̂ ) × (0.10𝑘̂). This leads to 𝐹⃗ =

4.0 × 10−6(𝑗̂ × 𝑘̂) ⇒ 𝐹⃗ = 4.0 × 10−6𝑖̂ N…(2) 

It is seen that this 𝐹⃗ ⊥ 𝑣⃗ and the charged partcile would continue to move constant speed 𝑣 = 2.0 × 103 m/s. 

It implies that  𝐹⃗ acts as centripetal force and particle would describe a circular motion of radius 𝑟  such that 

𝐹 =
𝑚𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑣2

𝐹
…(3). 



Using the avaialble data radius of the circle would be 𝒓 =
(2.0×10−13)(2.0×103)

2

4.0×10−6 ⇒ 𝑟 = 2.0 × 10−1m…(4), 

or 20 cm. 

Therfore, time period would be 𝑇 =
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
⇒ 𝑇 =

2𝜋𝑟

𝑣
⇒ 𝑇 =

2𝜋(2.0×10−1)

2.0×103 . It leds to a time 

period 𝑻 = 2𝜋 × 10−4 s. or 6.3 × 10−4s 

Thus, answers are 20 cm,   𝟔. 𝟑 × 𝟏𝟎−𝟒s. 

I-61 Given that radius of circle described by a proton in magnetic field 𝐵 = 0.10 T is 𝑟𝑝 = 1 cm, It is required to 

find radius 𝑟𝛼 of an 𝛼-particle moving with the same speed in the same magnetic field. 

This problem involves concept of magnetic force as per Lorentz’s Force Law, which is  𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹 =

𝑞𝑣𝐵 sin 𝜃 𝑛̂…(1) and mechanics of uniform cicular motion 𝐹 =
𝑚𝑣2

𝑟
…(2). For uniform cicular motion 

combining (1) and (2) 𝑞𝑣𝐵 sin 𝜃 =
𝑚𝑣2

𝑟
⇒

𝑣

𝐵 sin 𝜃
=

𝑞𝑟

𝑚
…(3). With identical 𝑣⃗ and 𝐵⃗⃗ for proton and 𝛼-particle 

L.H.S is same for both the paticles accordingly, 
𝑞𝑝𝑟𝑝

𝑚𝑝
=

𝑞𝛼𝑟𝛼

𝑚𝛼
⇒ 𝑟𝛼 = (

𝑞𝑝𝑚𝛼

𝑞𝛼𝑚𝑝
) 𝑟𝑝…(4) Given that 𝑟𝑝 = 1 cm , 

and we know that charge of proton 𝑞𝑝 = 𝑒 and 𝑞𝛼 = 2𝑒, while taking mass of proton 𝑚𝑝 = 𝑚, mass of alpha 

particle is 𝑚𝛼 = 4𝑚. Accordingly, 𝑟𝛼 = 1 ×
𝑒×4𝑚

2𝑒×𝑚
⇒ 𝑟𝛼 = 𝟐cm is the answer. 

N.B.: In the problem value of 𝐵 is notional and is not rrequired in arriving at results. Secondly, though radius 

of proton is given in CGS unit, deliberately it has not been converted in SI, because what is required to be 

detrmined is another radius. Thirdly, all quantities of coefficient in (4) are ratios of identical quantities of the 

two particles. Thus, this problem gets automatically simplified, without involving apparent calculations.  

I-62 Given that an electron having charge 𝑞 = −1.6 × 10−19J circulates in a path of radius 𝑟 = 0.10 m possesses 

kinetic energy 𝐾 =
1

2
𝑚𝑣2 = 100𝑒𝑉….(1). One 1𝑒𝑉 = 𝑞𝑉|𝑉=1 is the energy in Joules gained by an electron 

is moved against electric field created by a potential difference ∆𝑉 = 1V.Therefore, 1𝑒𝑉 = (1.6 × 10−19) ×

1 ⇒ 1𝑒𝑉 = 1.6 × 10−19J…(2).  Combining (1) and (2), Therefore, 
1

2
𝑚𝑣2 = 100 × (1.6 × 10−19) ⇒

𝑚𝑣2 = 3.2 × 10−17…(3). And, speed of electron is 𝑣 = √
3.2×10−17

𝑚
⇒  𝑣 = √

3.2×10−17

9.1×10−31 ⇒  𝑣 = √35.16 ×

106…(4). Here, mass of electron 𝑚 = 9.1 × 10−31. 

A charged particle in motion with a velocity 𝑣⃗ inside a magnetic field 𝐵⃗⃗ experiences a magnetic force, as per 

Lorentz’s Force Law, which is  𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵 sin 𝜃 𝑛̂…(5) Here, 𝜃 is angle of 𝐵⃗⃗ w.r.t. 𝑣⃗ and unit 

vector 𝑛̂ is perpendicular to the plane contaning vectors 𝑣⃗ and 𝐵⃗⃗ . 

Since the electron is describing circular motion of radius 𝑟, hence centifugal force 𝐹⃗C =
𝑚𝑣2

𝑟
𝑟̂…(6) is 

experienced by it . In state of uniform motion, i.e. equilibrium,  𝐹⃗𝑚 +  𝐹⃗C = 0 ⇒ 𝑞𝑣𝐵 sin 𝜃 =
𝑚𝑣2

𝑟
. It leas to 

𝐵 sin 𝜃 =
𝑚𝑣2

𝑞𝑣𝑟
⇒ 𝐵 sin 𝜃 =

𝑚𝑣

𝑞𝑟
…(7). It is seen that magnitude of magnetic field is dependent upon sin 𝜃 and 

maximum value of sin 𝜃𝑚𝑎𝑥 = 1 ⇒ 𝐵𝑚𝑖𝑛 =
𝑚𝑣

𝑞𝑟
…(8). 

Using the available data in (8), 𝐵𝑚𝑖𝑛 =
(9.1×10−31)(√35.16×106)

(1.6×10−19)×0.10
⇒ 𝑩𝒎𝒊𝒏 = 33.7 × 10−5T or 𝟑. 𝟒 × 𝟏𝟎−𝟒T is 

answer of the first part. 

Number of revolutions per second  made by electron is 𝑛 =
𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

𝑃𝑒𝑟𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑜𝑟𝑏𝑖𝑡
⇒ 𝑛 =

𝑣

2𝜋𝑟
…(9). 

Using the available data 𝑛 =
√35.16×106

2𝜋×0.10
⇒ 𝑛 = 𝟗. 𝟒 × 𝟏𝟎𝟔 is answer of the second part, 

Thus, answers are 𝟑. 𝟒 × 𝟏𝟎−𝟒T, 𝟗. 𝟒 × 𝟏𝟎𝟔. 



I-63 For convenience of analysis, unit vectors in 3D are shown in the figure. Protons 

having charge 𝑞 = 𝑒  come out of an accelerator rom A with kinetc energy 𝐾 =

1

2
𝑚𝑣2 ⇒ 𝑣 = √

2𝐾

𝑚
…(1). Here, 𝑚 is mass of proton and 𝑣⃗ = is the velocity. The 

proton beam bends while passing through magnetic field 𝐵⃗⃗ ⊥ 𝑣⃗.  

As per Lorentz’s Force Law, which is  𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣⃗ × 𝐵𝑘̂ ⇒ 𝐹⃗𝑚 =

𝑞𝑣𝐵 sin 𝜃 (−𝑟̂) .Here, angle of 𝐵⃗⃗ w.r.t. 𝑣⃗ is given to be 𝜃 =
𝜋

2
⇒ sin 𝜃 = 1 and 

unit radial vector 𝑟̂ as shown in the figure. Accordingly, 𝐹⃗𝑚 = 𝑞𝑣𝐵(−𝑟̂)…(2), 

centripetal force responsible for circular motion  of the proton. 

Magnetic force at A is in a direction perpendicular to the velocity of ejection by accelerator. It will not will 

change the speed and circular trajectory of protons is shown in the figure. 

The proton while describing circular it will experience it will experience centrifugal force 𝐹⃗C =
𝑚𝑣2

𝑟
𝑟̂…(3). . 

In state of uniform motion, i.e. equilibrium,  𝐹⃗𝑚 +  𝐹⃗C = 0 ⇒ 𝑞𝑣𝐵(−𝑟̂) +
𝑚𝑣2

𝑟
𝑟̂. It leas to 𝐵 =

𝑚𝑣2

𝑞𝑣𝑟
⇒ 𝐵 =

𝑚𝑣

𝑞𝑟
…(4).  

Using the available data, 𝐵 =
𝑚(√

2𝐾

𝑚
)

𝑒𝑟
⇒ 𝐵 =

√2𝑚𝐾

𝑒𝑟
…(5). 

It is given that magnitude of the magnetic field is such that it just misses a target placed at distance 𝑙 from the 

accelerator. From the the geometry of of the circular path of proton in magnetic field it isseen that 𝑟 =
𝑙

2
, 

accordingly (5) gets transformed to 𝐵 =
√2𝑚𝐾

𝑒
𝑙

2

⇒ 𝐵 =
2√2𝑚𝐾

𝑒𝑙
⇒ 𝐵 =

√𝟖𝒎𝑲

𝒆𝒍
 is the answer. 

N.B.: This problem needs careful analysis of motion of the charged particle. Accordingly, the target along the 

accelerator will always be missed. It must be along a line perpendicular to the initial velocity at A, the instant 

of ejection from the accelerator. Rest of the problem is application of electromagnetic forces and mechanics 

of circular motion. 

I-64 Let a particle having mass 𝑚 and carrying a charge 𝑞 is accelerated through a potential difference 

𝑉 = 12 × 103 V. At the instant of injection into perpendicular magnetic field 𝐵⃗⃗ = 0.2𝑘̂ velocity 

attained by the particle, taken to be along Y-axis, is 𝑣⃗ = 𝑣𝑗̂ = (1.0 × 106)𝑣 m/s. For 

convenience 3D unit vectors are shown in the figure. 

As per Lorentz’s Force Law, which is  𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣𝐵(𝑣  × 𝑘̂) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵(−𝑟̂) 

…(1). Since 𝐹⃗𝑚 ⊥  𝑣⃗ it a condition of uniform circular motion. 

It is required to find radius of circle described by the particle. During circular motion particle would experience 

a centrifugal force 𝐹⃗𝑐 =
𝑚𝑣2

𝑟
𝑟̂…(2).  During circular motion of the particle forces are in equilibrium  and 

hence 𝐹⃗𝑚 +  𝐹⃗𝑐 = 0 …(3). Combining (1)..(3), 𝑞𝑣𝐵(−𝑟̂) +
𝑚𝑣2

𝑟
𝑟̂ = 0 ⇒ 𝑞𝑣𝐵 =

𝑚𝑣2

𝑟
⇒ 𝑟 = (

𝑚

𝑞
) (

𝑣

𝐵
)…(4). 

In (4)  
𝑚

𝑞
 is unknown and for this acceleration of particle in electric field is being analyzed. Energy balance of 

the particle after its acceleration in electric field. Accordingly, 𝑞𝑉 =
1

2
𝑚𝑣2 ⇒

𝑚

𝑞
=

2𝑉

𝑣2…(5). Combining (4) 

and (5), 𝑟 = (
2𝑉

𝑣2) (
𝑣

𝐵
) ⇒ 𝑟 =

2𝑉𝐵

𝑣𝐵
 Using the available data, 𝑟 =

2(12×103)

(1.0×106)(0.2)
⇒ 𝒓 = 12 × 10−2m or 12 cm is 

the answer. 



I-65 Mass of helium ion is four times the mass of a proton accordingly  𝑚 = 4(1.6 × 10−27)kg and 

charge on it is 𝑞 = 2𝑒 = 2 × (1.6 × 10−19) C. For convenience of analysis 3D unit vectors are 

shown in the figure. Given is speed of projection of the ion, taken along 𝑗̂, is 𝑣⃗ = 𝑣 𝑗̂ = 10 ×

103 𝑗 ̂ m/s. The ion is projectedinto magnetic field perpendicularly. Accordingly, taking 𝐵⃗⃗ =
𝐵𝑘̂ = 1.0𝑘̂T. 

This system would cause a magnetic force on the ion as per Lorentz’s Force Law, which is  𝐹⃗ =

𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣𝐵(𝑣  × 𝑘̂) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵𝑛̂. Since 𝐹⃗𝑚 ⊥  𝑣⃗ it a condition of uniform circular motion, 

therefore, 𝑛̂ → (−𝑟̂) hence, 𝐹⃗𝑚 = 𝑞𝑣𝐵(−𝑟̂)…(1).  

Using the available data 𝐹𝑚 = 2 × (1.6 × 10−19)(10 × 103)(1.0) ⇒ 𝐹𝑚 = 𝟑. 𝟐 × 𝟏𝟎−𝟏𝟓 N is answer of 

part (a). 

During circular motion the ion would experience a centrifugal force  𝐹⃗𝑐 =
𝑚𝑣2

𝑟
𝑟̂…(2).  During circular motion 

of the particle forces are in equilibrium  and hence 𝐹⃗𝑚 +  𝐹⃗𝑐 = 0 …(3). Combining (1)..(3), 𝑞𝑣𝐵(−𝑟̂) +
𝑚𝑣2

𝑟
𝑟̂ = 0 ⇒ 𝑞𝑣𝐵 =

𝑚𝑣2

𝑟
⇒ 𝑟 = (

𝑚

𝑞
) (

𝑣

𝐵
)…(4). Using available data 𝑟 = (

4×1.6×10−27

2×(1.6×10−19)
) (

10×103

1.0
). It leads to 

𝒓 = 𝟐. 𝟎 × 𝟏𝟎−𝟒m is answer of the part (b) 

Thus, time taken by the the ion complete one revolution 𝑇 =
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑜𝑛
⇒ 𝑇 =

2𝜋𝑟

𝑣
. Using the 

available data 𝑇 =
2𝜋(𝟐.𝟎×𝟏𝟎−𝟒)

10×103 ⇒ 𝑇 = 1.3 × 𝟏𝟎−𝟕s. 

Thus, answers are (a) 𝟑. 𝟐 × 𝟏𝟎−𝟏𝟓 N   (b) 𝟐. 𝟏 × 𝟏𝟎−𝟒m    (c) 𝟏. 𝟑 × 𝟏𝟎−𝟕 s 

I-66 Mass of a proton is 𝑚 = (1.6 × 10−27)kg and charge on it is 𝑞 = 𝑒 = (1.6 × 10−19) C. For 

convenience of analysis 3D unit vectors are shown in the figure. Given is speed of projection of 

the ion, taken along 𝑗̂, is 𝑣⃗ = 𝑣 𝑗̂ = 3 × 106 𝑗̂ m/s. The ion is projectedinto magnetic field 

perpendicularly. Accordingly, taking 𝐵⃗⃗ = 𝐵𝑘̂ = 0.6𝑘̂T. 

This system would cause a magnetic force on the ion as per Lorentz’s Force Law, which is  𝐹⃗ =

𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣𝐵(𝑣  × 𝑘̂) ⇒ 𝐹⃗ = 𝑞𝑣𝐵𝑛̂. Since 𝐹⃗𝑚 ⊥  𝑣⃗ it a condition of uniform circular 

motion, therefore, 𝑛̂ → (−𝑟̂) hence, 𝐹⃗ = 𝐹(−𝑟̂) = 𝑞𝑣𝐵(−𝑟̂)…(1). Therefore, centripetal acceleration 

experienced by the proton is 𝑎 =
𝐹𝑚

𝑚
⇒ 𝑎 =

𝑞𝑣𝐵

𝑚
…(2). 

Using the available data 𝑎 =
(1.6×10−19)(3×106)(0.6)

1.6×10−27 ⇒ 𝑎 = 𝟏. 𝟖 × 𝟏𝟎𝟏𝟒 m/s2 is the answer. 

I-67 Given that an electron carrying charge 𝑞 = (1.6 × 10−19) C mives in a circular path of radius 

𝑟̂ = 𝑟𝑟̂ = 1𝑟̂ m  moves with a velocity 𝑣⃗ = 𝑣𝑣 is perpendicular to the magnetic field  𝐵⃗⃗ = 𝐵𝑘̂ =

0.50𝑘̂T. For convenience of analysis 3D unit vectors as shown in the figure have been used.. 

Electron in this system would cause a magnetic force as per Lorentz’s Force Law, which is  𝐹⃗ =

𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣𝐵(𝑣  × 𝑘̂) ⇒ 𝐹⃗ = 𝑞𝑣𝐵𝑛̂. Since 𝐹⃗𝑚 ⊥  𝑣⃗ it a condition of uniform circular 

motion, therefore, 𝑛̂ → (−𝑟̂) hence, 𝐹⃗ = 𝐹(−𝑟̂) = 𝑞𝑣𝐵(−𝑟̂)…(1). Therefore, centripetal acceleration 

experienced by the proton is 𝑎 =
𝐹𝑚

𝑚
⇒ 𝑎 =

𝑞𝑣𝐵

𝑚
…(2). Mass of electron 𝑚 = 9.1 × 10−31kg. 

In circular motion eectron of mass 𝑚 would experience a centrfugal force 𝐹⃗𝐶 =
𝑚𝑣

𝑟

2
𝑟̂…(3). During uniform 

circular motion 𝐹⃗ +  𝐹⃗𝐶 = 0 ⇒ 𝑞𝑣𝐵(−𝑟̂) +
𝑚𝑣

𝑟

2
𝑟̂ = 0 ⇒

𝑚𝑣

𝑟

2
= 𝑞𝑣𝐵 ⇒ 𝑣 =

𝑞𝐵𝑟

𝑚
…(4). Using the available 

data we have 𝑣 =
(1.6×10−19)×0.5×1

9.1×10−31 ⇒ 𝒗 = 𝟖. 𝟖 × 𝟏𝟎𝟏𝟎 m/s. is the answer of part (a), but it is unreasonable 

since it is greater than velocity of light 𝑐 = 3 × 108m/s. 



In case the particle is proton velocity would be determined using (4) where 𝑚 = 𝑚𝑝 = 1.6 × 10−27. 

Accordingly, velocity of proton 𝑣𝑝 =
𝑞𝐵𝑟

𝑚𝑝
⇒ 𝑣𝑝 =

(1.6×10−19)×0.5×1

1.6×10−27 ⇒ 𝒗𝒑 = 𝟓. 𝟎 × 𝟏𝟎𝟕m/s  is answer of 

part (b). 

Thus, answers are (a) 𝟖. 𝟖 × 𝟏𝟎𝟏𝟎m/s   (b) 𝟓. 𝟎 × 𝟏𝟎𝟕m/s  . 

I-68 This problem involves 3D vectors and hence unit vectors are shown in the figure. Given is a 

particle of mass mass 𝑚 and charge  𝑞 moving with a velocity 𝑣⃗ = 𝑣𝑣 enters a magnetic field  

𝐵⃗⃗ = 𝐵(−𝑘̂)  as shown in the figure. It is seen that velocity vector 𝑣⃗ ⊥ 𝐵⃗⃗. 

Therefore, magnetic force experienced by the particle 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗. It leads to 

𝐹⃗𝑚 = 𝑞𝑣𝐵(𝑛̂)….(1). Here, 𝑛̂ is perpendicular to both the vectors 𝑣⃗ and 𝐵⃗⃗. This 

is a condition of circular motion where 𝐹⃗𝑚 acts as centripetal force such that 𝑛̂ →
(−𝑟̂) …(2), and 𝑟̂ is the radius vector of the circular path. 

With this pre-analysis of the system, each part is being solved separately – 

Part (a): The particle during circular motion would experience a centrifugal force 𝐹⃗𝐶 =
𝑚𝑣2

𝑟
𝑟̂…(3). During 

the uniform circular motion forces are in equilibrium. Thus, combining (1), (2) and (3) it leads to  

𝐹⃗𝑚 + 𝐹⃗𝐶 = 0 ⇒ 𝑞𝑣𝐵(−𝑟̂) +
𝑚𝑣2

𝑟
𝑟̂ = 0 ⇒ 𝑞𝑣𝐵 =

𝑚𝑣2

𝑟
⇒ 𝒓 =

𝒎𝒗

𝒒𝑩
…(4), is answer of part (a) 

Part (b): Let A is the point at which charged particle is entering the magnetic field at an angle 

𝜃 and after taking a circular path  of radius 𝑟, having center at C, it exits the magnetic 

field at B, as shown in the figure ∠𝐴𝐶𝐵 = 𝛼 = (𝜋 − 2𝜃)…(5). Thus, geometrically 

the arc AB subtends an angle (𝝅 − 𝟐𝜽)) at its center C is the answer of part (b). 

Part (c): Time spend by the particle in the magnetic field which is performing uniform 

circular motion with speed 𝑣 is 𝑡 =
𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑐

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
…(6).  Length of the 

arc AB 𝑙𝐴𝐵 = 𝑟𝛼…(7). Thus combining (4)…(7) we have  𝑡 =
𝑟(𝜋−2𝜃)

𝑣
⇒ 𝑡 =

𝑚𝑣

𝑞𝐵
(𝜋−2𝜃)

𝑣
⇒ 𝑡 =

𝑚(𝜋−2𝜃)

𝑞𝐵
…(8).Thus, answer of part (c) is 

𝒎(𝝅−𝟐𝜽)

𝒒𝑩
 

 Part (d): In this case charge of the particle is (−𝑞). Therefore, analysis would be on 

the lines in part (a)..(c) except in all the equations. Therefore direction of 

magnetic force would reverse leading to the trajectory of the path of the 

particle as shown in the figure. 

Since, magnitude of the magnetic force and counterbalancing centrifugal force 

remain unchanged. Hence, radius of the path of uniform circular motion would 

remain same as 𝒓 =
𝒎𝒗

𝒒𝑩
. Further, parajectory of the particle is major arc of the 

circle and hence geometrically angle formed by the major arc at the centre C of the trajectory is 𝝅 +
𝟐𝜽. As regards speed of the particle as weel as radius of the circular path remain unchanged. Hence, 

time taken by the particle to come out of the magnetic field is  
𝒎(𝝅+𝟐𝜽)

𝒒𝑩
.  

Thus, answer of the part (d) is 
𝒎𝒗

𝒒𝑩
, 𝝅 + 𝟐𝜽, 

𝒎(𝝅+𝟐𝜽)

𝒒𝑩
 

Thus, answers are (a) 
𝒎𝒗

𝒒𝑩
   (b) 𝝅 − 𝟐𝜽   (c) 

𝒎

𝒒𝑩
(𝝅 − 𝟐𝜽)   (d) 

𝒎𝒗

𝒒𝑩
, 𝝅 + 𝟐𝜽,

𝒎

𝒒𝑩
(𝝅 + 𝟐𝜽). 

N.B.: (1) In such in part (d) analytical equations remain same as in part (a)…(c), except for the change in 

charge from 𝑞 → (−𝑞). Accordingly there is change in trajectory of the charged particle. Thus affecting 

change in geometry, wherever necessary, symmetry of equations can be utilized to abridge the answer, 

unless Part (d) is an independent question. 



(2) This problem involves uniform speed of particle along a circular trajectory. Hence, 𝑡 =
𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑐

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
 

is correct. However, solving it as, on the lines of projectile motion 𝑡 =
𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐴𝐵

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑙𝑜𝑛𝑔 𝐴𝐵 
 would be incorrect. 

I-69 This problem involves 3D vectors and hence unit vectors are shown in the figure. Given is a 

particle of mass mass 𝑚 and charge  𝑞 moving with a velocity 𝑣⃗ = 𝑣𝑣 enters a magnetic field  

𝐵⃗⃗ = 𝐵(−𝑘̂)  as shown in the figure. It is seen that velocity vector 𝑣⃗ ⊥ 𝐵⃗⃗. Therefore, magnetic 

force experienced by the particle 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗. It leads to 𝐹⃗𝑚 = 𝑞𝑣𝐵(𝑛̂)….(1). Here, 𝑛̂ is 

perpendicular to both the vectors 𝑣⃗ and 𝐵⃗⃗. This is a condition of circular motion where 𝐹⃗𝑚 acts 

as centripetal force such that 𝑛̂ → (−𝑟̂) …(2), and 𝑟̂ is the radius vector 

of the circular path. 

The particle during circular motion would experience a centrifugal force 𝐹⃗𝐶 =
𝑚𝑣2

𝑟
𝑟̂…(3). During the uniform circular motion forces are in equilibrium. Thus, 

combining (1), (2) and (3) it leads to  𝐹⃗𝑚 +  𝐹⃗𝐶 = 0 ⇒ 𝑞𝑣𝐵(−𝑟̂) +
𝑚𝑣2

𝑟
𝑟̂ = 0 ⇒

𝑞𝑣𝐵 =
𝑚𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑣

𝑞𝐵
…(4). 

With this pre-analysis of the system, each part is being solved separately – 

(a) 
𝑚𝑣

𝑞𝐵
    (b) 

𝑚𝑣

2𝑞𝐵
   (c) 

2𝑚𝑣

𝑞𝐵
 

Part (a) - 𝒅 is slightly smaller than 
𝒎𝒗

𝒒𝑩
 : Here, 𝑑 is width of the magnetic field and radius 

of the circular trajectory of the particle insidethe magnetic field is 𝑟 =
𝑚𝑣

𝑞𝐵
. It 

implies that 𝑑 → 𝑟. Thus, geometry approach to as shown in the figure. Thus, 

angle of deviation of the particle is 𝜽 =
𝝅

𝟐
 is answer of the part (a). 

Part (b) - 𝒅 is slightly smaller than 
𝒎𝒗

𝟐𝒒𝑩
: Here, 𝑑 →

𝑚𝑣

2𝑞𝐵
⇒ 𝑑 →

𝑟

2
. In this case angle of 

deviation is 𝜃 = ∠ACB and sin 𝜃 =
𝑑

𝑟
⇒ sin 𝜃 →

𝑟

2

𝑟
⇒ sin 𝜃 =

1

2
⇒ 𝜃 =

𝝅

𝟔
 is 

answer of the part (a). 

 

Part (c) - 𝒅 is slightly smaller than 
𝟐𝒎𝒗

𝒒𝑩
: Here, 𝑑 →

2𝑚𝑣

𝑞𝐵
⇒ 𝑑 → 2𝑟. In this case 

magnetic field is spread over a length which allows projectile to just as shown 

in the figure. Hence, angle of deviation of the particle is 𝜽 = 𝝅 is answer of 

the part (c). 

Thus, answers are (a) 
𝝅

𝟐
    (b) 

𝝅

𝟔
   (c) 𝝅 

I-70 This problem involves 3D vectors and hence unit vectors are shown in the figure. Given is a 

particle of mass mass 𝑚 and charge  𝑞 moving with a velocity 𝑣⃗ = 𝑣(−𝑗̂) = 6.0 × 104(−𝑗̂) 

enters a magnetic field  𝐵⃗⃗ = 𝐵(−𝑘̂) = 0.5(−𝑘̂)T  as shown in the figure. It is seen that velocity 

vector 𝑣⃗ ⊥ 𝐵⃗⃗. Therefore, magnetic force experienced by the particle, as per Lorentz’s Force Law, 

𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑞(6.0 × 104(−𝑗̂)) × (0.5(−𝑘̂)) ⇒ 𝐹⃗𝑚 = 𝑞(3.0 × 104)𝑛̂…(1).  



It is case of circular motion where 𝑛̂ is perpendicular to both vectors 𝑣⃗ and 𝐵⃗⃗ and 

𝑛̂ = (−𝑟̂)…(2) Moreover, ions are singly charged, yet initial direction of 

deflection as given is along (−𝑖)̂ and hence charge on ions must be negative. It 

leads to 𝐹⃗𝑚 = 𝑞𝑣𝐵(−𝑟̂)….(3).  

The particle during circular motion would experience a centrifugal force 𝐹⃗𝐶 =
𝑚𝑣2

𝑟
𝑟̂…(4). During the uniform circular motion forces are in equilibrium. Thus, 

combining (1), (2) and (3) it leads to  𝐹⃗𝑚 +  𝐹⃗𝐶 = 0 ⇒ 𝑞𝑣𝐵(−𝑟̂) +
𝑚𝑣2

𝑟
𝑟̂ = 0 ⇒

𝑞𝑣𝐵 =
𝑚𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑣

𝑞𝐵
…(5), is radius of the circular trajectory of the ions. 

We are given two isotopes whose masses are 𝑚1 and 𝑚2 and, therefore, ratio of their radii is 
𝑟1

𝑟2
=

𝑚1𝑣

𝑞𝐵
𝑚2𝑣

𝑞𝐵

. It leads 

to 
𝑟1

𝑟2
=

𝑚1

𝑚2
…(6). It is given that ions emerge out of the magnetic field in backward direction and hence 

seperation of incident and emergent ions is diameter of the circular trajectory of the ions where 𝑑 = 2𝑟 and 

likewise atomic mass is 𝑚 = 𝐴(1.6 × 10−27), here 𝐴 is atomic number of the atom. Accordingly, (6) is 

transformed into 
𝑑1

𝑑2
=

𝑚1

𝑚2
⇒

2×𝑟1

2×𝑟2
=

𝐴1×(1.6×10−27)

𝐴2×(1.6×10−27)
⇒

𝑑1

𝑑2
=

𝑍1

𝑍2
…(7). 

Usimg the given data in (7),  
3

3.5
=

𝑚1

𝑚2
⇒

6

7
=

𝑚1

𝑚2
…(8). Considering the atomic structure ions having mass 

𝑚1is C12  and the other ion is 𝑚1is C14  whose atomic numbers are 12 and 14 respectively. Thus, answer is 12C 

and 14C.  

N.B.: It is seen from the illustration that all the given data is notional and is not required when solving the 

problem algebriacally. It, however, requires understanding of atomic numbers for iosotopes. is seen from the 

illustration that all the given data is notional and is nome of it is required when solving the problem 

algebriacally. It is, therefore, advised that numerical solution should not be attempted unless it is essential. It 

saves time and brings in accuracy of results. It, however, requires understanding of atomic numbers for 

iosotopes. 

I-71 This problem involves 3D vectors and hence unit vectors are shown in the figure.  An Fe+ ion 

having charge 𝑞 = 𝑒, having atomic number 𝐴, is accelerated, say along 𝑗̂, through potential 

difference 𝑃𝐷 = 500. Therefore, kinetic energy of the ion being injected in the magnetic field 

𝐵⃗⃗ = 𝐵𝑘̂ = (20 × 10−3)𝑘̂, taken to be along 𝑘̂, 𝐾 = 𝑃𝐷 × 𝑒…(1). Let the ion acquires a velocity 

𝑣⃗ = 𝑣𝑗 ̂ then 𝐾 =
1

2
𝑚𝑣2…(2). Here 𝑚 is the mass of the ion. 

Combining (1) and (2), 
1

2
𝑚𝑣2 = 𝑃𝐷 × 𝑒 ⇒ 𝑣 = √

2𝑃𝐷×𝑒

𝑚
…(3), is velocity of the ion.  

It is seen that velocity vector 𝑣⃗ ⊥ 𝐵⃗⃗. This ion in the  magnetic field would experience a force as per Lorentz’s 

Force Law, 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑒 (√
2𝑃𝐷×𝑒

𝑚
𝑗̂) × 𝐵𝑘̂ ⇒ 𝐹⃗𝑚 = (√

2𝑃𝐷×𝑒3𝐵2

𝑚
) 𝑖.̂ This is a case of circular 

motion of ion where 𝑣⃗ ⊥ 𝐹⃗𝑚, accordingly ceptripetal acceleration would acts along (−𝑟̂) = 𝑖 ̂. This concludes 

to 𝐹⃗𝑚 = (√
2𝑃𝐷×𝑒3𝐵2

𝑚
) (−𝑟̂)…(4). 

While the ion describes circular motion wouldit  experience a centrifugal force 𝐹⃗𝐶 =
𝑚𝑣2

𝑟
𝑟̂…(5). During the 

uniform circular motion the two forces 𝐹⃗𝑚 and 𝐹⃗𝐶 are in equilibrium. Thus, combining(3), (4) and (5) it leads 

to  𝐹⃗𝑚 +  𝐹⃗𝐶 = 0 ⇒ (√
2𝑃𝐷×𝑒3𝐵2

𝑚
) (−𝑟̂) +

𝑚𝑣2

𝑟
𝑟̂ = 0 ⇒ (√

2𝑃𝐷×𝑒3𝐵2

𝑚
) =

𝑚(
2𝑃𝐷×𝑒

𝑚
)

𝑟
⇒ 𝑟 = √

2𝑃𝐷×𝑚

𝑒×𝐵
…(6). 



We are given two isotopes whose masses are 𝑚1 = 𝐴1 × (1.6 × 10−27) and 𝑚2 = 𝐴2 × (1.6 × 10−27) and, 

give that 𝐴1 = 57 and 𝐴2 = 58. Accordingly, using the available data, 𝒓𝟏 = √
2×500×(57×(1.6×10−27))

(1.6×10−19)×(20×10−3)
= 𝟏𝟏𝟗 

cm. Likewise, 𝒓𝟐 = √
2×500×(58×(1.6×10−27))

(1.6×10−19)×(20×10−3)
= 𝟏𝟐𝟎 cm. 

Thus, answers are 119 cm and 120 cm. 

I-72 This problem involves 3D vectors and hence unit vectors are shown in the figure.Given are single 

charged potessioum ions having kinetic energy 𝐾 = 32 × 103eV. For reference energy 1𝑒𝑉 =
1.6 × 10−19J, thus 𝐾 = (32 × 103)(1.6 × 10−19) J. Such ions are injected along (𝑗̂) into a 

magnetic field 𝐵 = 0.500(−𝑘̂) T …(1) of width 𝑑 = 1.00 × 10−2m. 

Let the ion acquires a velocity 𝑣⃗ = 𝑣𝑗 ̂  then 𝐾 =
1

2
𝑚𝑣2…(2). Here 𝑚 is the mass of the ion. 

Accordingly,  
1

2
𝑚𝑣2 = 𝐾 ⇒ 𝑣 = √

2𝐾

𝑚
…(2),. Hence, velocity vector  of the ion. Is 𝑣⃗ = 𝑣𝑗…̂(3). 

It is seen that velocity vector 𝑣⃗ ⊥ 𝐵⃗⃗. This ion in the  magnetic field would experience a force as per Lorentz’s 

Force Law, 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑒 (√
2𝐾

𝑚
𝑗̂) × 𝐵𝑘̂ ⇒ 𝐹⃗𝑚 = (𝑒𝐵√

2𝐾

𝑚
) 𝑖.̂ This is a case of circular motion of 

ion where 𝑣⃗ ⊥ 𝐹⃗𝑚, accordingly ceptripetal acceleration would acts along (−𝑟̂) = 𝑖 ̂. This concludes to 𝐹⃗𝑚 =

(𝑒𝐵√
2𝐾

𝑚
) (−𝑟̂)…(4). 

While the ions describe circular motion wouldit  experience a centrifugal force 𝐹⃗𝐶 =
𝑚𝑣2

𝑟
𝑟̂…(5). We know 

that mass number of potassium is 𝐴, therefore, 𝑚 = 𝐴 × (1.6 × 10−27)kg. 

During the uniform circular motion the two forces 𝐹⃗𝑚 and 𝐹⃗𝐶 are in equilibrium. Thus, combining (4) and (5) 

it leads to  𝐹⃗𝑚 +  𝐹⃗𝐶 = 0 ⇒ (𝑒𝐵√
2𝐾

𝑚
) (−𝑟̂) +

𝑚𝑣2

𝑟
𝑟̂ = 0 ⇒ (𝑒𝐵√

2𝐾

𝑚
) =

𝑚(√
2𝐾

𝑚
)

2

𝑟
. It leads 

to ⇒ (𝑒𝐵√
2𝐾

𝑚
) =

2𝐾

𝑟
⇒  𝑟 =

√2𝐾×𝑚

𝑒𝐵
…(6).  

Circular trajectory of the ion through narrow magnetic field is shown in the figure. Ion 

during motion inside magnetic field is deflected through an 

angle 𝜃, which trigonometrically is sin 𝜃 =
𝑑

𝑟
…(7), as shown in 

the figure. Taking 𝜃 ≪⇒ sin 𝜃 → 𝜃 ⇒ 𝜃 =
𝑑

𝑟
…(8) 

Outside the magnetic field it reaches the screen along BR as shown in the figure. 

Therefore, for ions of kotassium with 𝐴1 = 39  and 𝐴2 = 41, their striking points 

R on the screen at a distance 𝑤f  from the magnetic field would be, above point P,  

at height  ℎ = RP − QP ⇒
ℎ

𝑤
= tan 𝜃…(9). With the approximation at (8), we have 

tan 𝜃 → 𝜃 =
𝑑

𝑟
. Accordingly, 

ℎ

𝑤
=

𝑑

𝑟
⇒ ℎ =

𝑑×𝑤

𝑟
 …(11). This for the two ions is ℎ1 and ℎ2.  

Accordingly, seperation between the two ions striking on the screen is ∆ℎ = |ℎ1 − ℎ2|. It further solves into  

∆ℎ = |
𝑑×𝑤

𝑟1
−

𝑑×𝑤

𝑟2
| ⇒ ∆ℎ = (𝑑 × 𝑤) |

1

𝑟1
−

1

𝑟2
| …(12). 



Combining (6) and (12), ∆ℎ = (𝑑 × 𝑤) |
1

√2𝐾×(𝐴1×(1.6×10−27))

𝑒×𝐵

−
1

√2𝐾×(𝐴2×(1.6×10−27))

𝑒×𝐵

|. It further solves into ∆ℎ =

(𝑑×𝑤)×(𝑒×𝐵)

√2𝐾×(1.6×10−27)
|

1

√𝐴1
−

1

√𝐴2
|.  

Using the available data, ∆ℎ =
((1.00×10−2)×(95.5×10−2))×((1.6×10−19)×(0.500))

√2×((32×103)×(1.6×10−19))×(1.6×10−27)
|

1

√39
−

1

√41
| 

⇒ ∆ℎ = (1.89 × 10−1) × (3.954 × 10−3) ⇒ ∆𝒉 = 𝟎. 𝟕𝟓 mm is the answer. 

N.B. This illustration uses approximation in arriving at values of 𝜃 and ℎ, and has been accordingly brought 

out in it. 

I-73 This problem involves 3D vectors and hence unit vectors are shown in the figure. Given is a 

particle of mass 𝑚 = 2.0 × 10−5kg, carries a charge 𝑞 = 2.0 × 10−3 C moves with a velocity 

𝑣⃗ = 𝑣𝑣 ⇒ 𝑣⃗ = 4.8𝑘̂ m/s…(1), inside magnetic field is 𝐵⃗⃗ = 𝐵𝑗̂ ⇒ 𝐵⃗⃗ = 1.2𝑗 ̂T…(2). 

It is seen that velocity vector 𝑣⃗ ⊥ 𝐵⃗⃗. This ion in the  magnetic field would experience a force as 

per Lorentz’s Force Law, 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑒(𝑣𝑘̂) × 𝐵𝑗̂ ⇒ 𝐹⃗𝑚 = (𝑒𝑣𝐵)(−𝑖)̂. This is a case 

of circular motion of ion where 𝑣⃗ ⊥ 𝐹⃗𝑚, accordingly ceptripetal acceleration would acts along 

(−𝑟̂) = (−𝑖)̂ . This concludes to 𝐹⃗𝑚 = (𝑞𝑣𝐵)𝑟̂…(3). Here, 𝑟̂ is the radius vector of the circular trajectory of 

the charged particle. 

In state of circular motion the particle would experience centripetal force 𝐹𝑐 =
𝑚𝑣2

𝑟
...(4). In case of uniform 

circular motion there is equilibrium of forces acting on the particle. Accordingly, 𝐹𝑚 = 𝐹𝑐 ⇒ 𝑞𝑣𝐵 =
𝑚𝑣2

𝑟
. It 

leads to 𝑟 =
𝑚𝑣

𝑞𝐵
…(5). 

Using the available data radius of the circular trajectory of the particle is 𝑟 =
(2.0×10−5)×4.8

(2.0×10−3)×1.2
⇒ 𝑟 = 4 cm…(6) 

Further, given is a lens of focal length 𝑓 = 0.12m and circular trajectory of the 

particle at a distance 𝑢 = −0.18 m. Therefore, image would also be circular and 

its location 𝑣 from the lens is 
1

𝑣
−

1

𝑢
=

1

𝑓
=

1

𝑣
=

1

𝑓
+

1

𝑢
. It leads to 

1

𝑣
=

1

0.12
−

1

0.18
⇒

𝑣 =
0.18×0.12

0.18−0.12
⇒ 𝑣 = 0.36m. Therefore, amplification factor 𝑚 = −

𝑣

𝑢
. It leads to 

𝑚 = −
0.36

(−0.18)
⇒ 𝑚 = 2. Accordingl, radius of the circular image would be 𝑟′ = 𝑟 × 𝑚 ⇒ 𝑟′ = 4 × 2 =

𝟖 cm is the answer. 

I-74 Let, mass of electron is 𝑚, carries a charge 𝑞 = −𝑒 moves is emitted with a velocity 𝑢 ≪ and is accelerated 

by a electric potential difference  𝑉 along a seperation 𝑑 = 𝑑𝑖̂ as 

shown in the figure. 

Kinetic energy gained by the electron during travel from P to Q 

would be 𝐾 = 𝑒𝑉 =
1

2
𝑚𝑣2. Hence, 𝑣 = √

2𝑒𝑉

𝑚
…(1).  

Further, there is magnetic field alongmagnetic field is 𝐵⃗⃗ = 𝐵𝑖 ̂…(2).     

These aligned electrons ion in the  magnetic field would experience a force as per Lorentz’s Force Law, 𝐹⃗𝑚 =

𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑐𝑣𝐵 sin 𝜃 𝑛̂ ⇒ 𝐹⃗𝑚 = 𝑒(𝑣𝑣) × 𝐵𝑖̂ ⇒ 𝐹⃗𝑚 = 𝐹𝑚𝑛̂ ⇒ 𝐹𝑚 = 𝑒𝑣𝐵…(3).  



Non-divergent electrons would not experience magnetic force since both 𝑣 = 𝑖 ̂ and hence from (3) we have 

𝐹⃗𝑚 = 𝑒(𝑣𝑖)̂ × 𝐵𝑖̂ ⇒ 𝐹⃗𝑚 = 𝑒𝑣𝐵(𝑖̂ × 𝑖)̂ = 0, since 𝑖̂ × 𝑖̂ = 0. Accordingly, time taken by the electron along QR 

would be 𝑡 =
𝑑

𝑣
⇒ 𝑡 = √

𝑚𝑑2

2𝑒𝑉
…(4). 

But, electrons diverted by any angle say 𝜃 would experience, as per (3), magnetic 

force 𝐹⃗𝑚 = 𝑒𝑣𝐵 sin 𝜃 𝑛̂ … (4). along (𝑛̂) is perpendicular to both the  vectors 𝑣 and 𝑖 ̂
and hence eventually 𝑣 ⊥ 𝑛̂ is a valid case of circular motion. Hence, divergent electron 

would experience a uniform circular motion of radius 𝑟 such that 𝐹𝑐 =
𝑚𝑣2

𝑟
…(5). In 

case of uniform circular motion of radius 𝑟, there would be equilibrium of forces. 

Hence, 𝐹𝑚 = 𝐹𝑐 ⇒ 𝑒𝑣𝐵 sin 𝜃 =
𝑚𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑣

𝑒𝐵 sin 𝜃
…(6).  

Electrons emerging at Q have same kinetic energy 𝐾 and hence same speed 𝑣. Yet, possibility of slight 

diversion by an angle 𝜃 in the merging electrons is not ruled out.  Electro-mechanics of such electrons reaching 

R reveal a geometrical symmetry as shown in the figure. Yet, dependence of 𝐹𝑚 ∝ sin 𝜃 in (3) and radius of 

curvature of the arc described by the electrons 𝑟 ∝
1

sin 𝜃
 in (6) makes 𝑑 = 𝑄𝑅 independent of 𝜃. It is discussed 

in footnote to the illustration. Accordingly length of the chord would be 𝑄𝑅 = 2𝑟 sin 𝜃 ⇒ 𝑄𝑅 =

2 (
𝑚(√

2𝑒𝑉

𝑚
)

𝑒𝐵 sin 𝜃
) sin 𝜃. It leads to 𝑄𝑅 = √

𝟖𝒎𝑽

𝒆𝑩𝟐 , is the answer. 

N.B.: Electro-mechanical analysis involved in the problem is of intresting relevance, and is being discussed. 

Change in momentum during time ∆𝑡 taken by deviated electron to describeng motion along the arc QR is  

∆𝑝 = 𝑚𝑣((sin 𝜃 𝑗̂ + cos 𝜃  𝑖̂) − (− sin 𝜃 𝑗̂ + cos 𝜃  𝑖̂)) ⇒ ∆𝑝 = 2𝑚𝑣 sin 𝜃 𝑗̂. Let then as per mechanics 
∆𝑝

∆𝑡
= 𝐹𝑚 ⇒

2𝑚𝑣

∆𝑡
sin 𝜃 = 𝑒𝑣𝐵 sin 𝜃 ⇒ ∆𝑡 =

2𝑚

𝑒𝐵
 …(7). It is seen that time taken to reach R by all electrons is 

independent of angle of diversion  

Electron, is describing circular motion with speed 𝑣 with a radius 𝑟 and time period of the circular motion is 

𝑇 =
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
⇒ 𝑇 =

2𝜋𝑟

𝑣
. Using (6) it leads to 𝑇 =

2𝜋(
𝑚𝑣

𝑒𝐵 sin 𝜃
)

𝑣
⇒ 𝑇 =

2𝜋𝑚

𝑒𝐵 sin 𝜃
 . It leads 

to length of the arc QR is 
∆𝑡

𝑇
=

𝑃𝑄𝑎𝑟𝑐

2𝜋𝑟
⇒ 𝑄𝑅𝑎𝑟𝑐 = (

∆𝑡

𝑇
) 2𝜋𝑟 ⇒ 𝑄𝑅𝑎𝑟𝑐 = 2𝜋 (

2𝑚

𝑒𝐵
2𝜋𝑚

𝑒𝐵 sin 𝜃

) (
𝑚𝑣

𝑒𝐵 sin 𝜃
) . It solves into 

𝑄𝑅𝑎𝑟𝑐 = (
2𝑚𝑣

𝑒𝐵
). Accordingly length of the chord would be 𝑄𝑅 = 2𝑟 sin 𝜃 ⇒ 𝑄𝑅 = 2 (

𝑚(√
2𝑒𝑉

𝑚
)

𝑒𝐵 sin 𝜃
) sin 𝜃. It 

leads to 𝑄𝑅 = √
8𝑚𝑉

𝑒𝐵2 . 

I-75 This problem involves 3D vectors and hence unit vectors are shown in the figure. Given are twoa 

particles of mass 𝑚, carries a charges 𝑞1 = 𝑞 and 𝑞2 = (−𝑞)  moves with initial velocities 𝑣⃗1 =

𝑣𝑗̂ and  𝑣⃗2 = 𝑣(−𝑗̂) …(1), inside magnetic field is 𝐵⃗⃗ = 𝐵(−𝑘̂) T…(2). 

It is seen that velocity vector 𝑣⃗ ⊥ 𝐵⃗⃗. This 𝑞1 in the  magnetic field would experience a force as 

per Lorentz’s Force Law, 𝐹⃗𝑚1 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚1 = 𝑞𝑣𝐵(𝑗̂) × (−𝑘̂) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵(−𝑖)̂ …(3). 

This is a case of circular motion of ion where 𝑣⃗ ⊥ 𝐹⃗𝑚, accordingly ceptripetal acceleration would 

acts along (−𝑟̂) = (−𝑖)̂ . This concludes to 𝐹⃗𝑚 = (𝑞𝑣𝐵)𝑟̂…(3). Here, 𝑟̂ is the radius vector of the circular 

trajectory of the charged particle. 

Likewise, 𝑞1 in the  magnetic field would experience a force 𝐹⃗𝑚2 = 𝑞2𝑣⃗2 × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚2 = (−𝑞)𝑣𝐵(−𝑗̂) ×

(−𝑘̂) ⇒ 𝐹⃗𝑚2
= 𝑞𝑣𝐵(−𝑖)̂ …(4). 



The problms states that Coulomb’s force  𝐹𝑒 between the two charges is switched off. It implies that  we have 

to consider 𝐹𝑒 = 0, between the two opposite charges. 

It is seen that magnitude of both the centripetal forces 𝐹𝑚1 = 𝐹𝑚1 =
𝑞𝑣𝐵…(5). In state of circular motion the particle would experience 

centripetal force 𝐹𝑐 =
𝑚𝑣2

𝑟
...(6). In case of uniform circular motion there is 

equilibrium of forces acting on the particle. Accordingly, 𝐹𝑚 = 𝐹𝑐 ⇒

𝑞𝑣𝐵 =
𝑚𝑣2

𝑟
. It leads to 𝑟 =

𝑚𝑣

𝑞𝐵
…(7).  

With this pre-analysis each part of the problem is being solved separately- 

Part (a): It is seen from (7), 𝑣 =
𝑟𝑞𝐵

𝑚
⇒ 𝑣 ∝ 𝑟….(8) Therefore, for maximum velocity of the charges such 

that they do not collide, 𝑟𝑚𝑎𝑥 =
𝑑

2
…(9). Combining (8) and (9), 𝑣𝑚𝑎𝑥 =

𝑟𝑚𝑎𝑥𝑞𝐵

𝑚
⇒ 𝑣𝑚𝑎𝑥 =

(
𝑑

2
)𝑞𝐵

𝑚
 ⇒

𝑣𝑚𝑎𝑥 =
𝒒𝑩𝒅

𝟐𝒎
…(10), is the answer of part (a). 

Part (b): It is seen that initially seperation 𝑠 between the charges decrease as long as deviation of the charges 

from intital velocity is 0 < 𝜃 <
𝜋

2
 as shown in the figure. Further, 𝑠𝑚𝑖𝑛 = 𝑑 − 2𝑟…(11) at 𝜃 <

𝜋

2
. 

Thereafter, for 
𝜋

2
< 𝜃 < 3

𝜋

2
 separation stars increasing. At given velocity 𝑣 =

𝑣𝑚𝑎𝑥

2
, combining (7) 

and (10), 𝑟 =
𝑚(

𝑣𝑚𝑎𝑥
2

)

𝑞𝐵
⇒ 𝑟 =

𝑚(
𝒒𝑩𝒅

𝟐𝒎
)

2𝑞𝐵
⇒ 𝑟 =

𝑑

4
. Hence, using (11), minimum seperation between 

charges would be 𝑠𝑚𝑖𝑛 = 𝑑 − 2 (
𝑑

4
) ⇒ 𝒔𝒎𝒊𝒏 =

𝒅

𝟐
…(12). 

Likewise, maximum seperation would be  𝑠𝑚𝑎𝑥 = 𝑑 + 2𝑟 ⇒

𝑠𝑚𝑎𝑥 = 𝑑 + 2 (
𝑑

4
) ⇒ 𝑠𝑚𝑎𝑥 = 𝑑 +

𝑑

2
. It leads to 𝒔𝒎𝒂𝒙 =

𝟑𝒅

𝟐
…(13). 

Thus, answer to part (b) is 
𝒅

𝟐
 𝐚𝐧𝐝 

𝟑𝒅

𝟐
. 

Part (c): When 𝑣 = 2𝑣𝑚, as per (7) and (10), radius of the trajectory 

of the charged particles would be 𝑟 =
𝑚(2𝑣𝑚)

𝑞𝐵
⇒ 𝑟 =

𝑚(2(
𝒒𝑩𝒅

𝟐𝒎
))

𝑞𝐵
⇒ 𝑟 = 𝑑…(14). Geometrically, this situation can 

be expressed as shown in the figure and the two charges 

collide after describing an angular displacement 𝜃. Here, sin 𝜃 =
𝑑

2

𝑟
⇒ sin 𝜃 =

𝑑

2𝑟
⇒ sin 𝜃 =

𝑑

2𝑑
⇒

sin 𝜃 =
1

2
⇒ 𝜃 =

𝜋

6
…(15). 

For uniform circular motion time to complete angular displacement 2𝜋 is 𝑇 =
2𝜋𝑟

𝑣
. Combining (8) 

and (14) we have 𝑇 =
2𝜋𝑑
𝑑𝑞𝐵

𝑚

⇒ 𝑇 =
2𝜋𝑚

𝑞𝐵
. Therefore, time 𝑡 taken for angular displacement 

𝜋

6
 would 

be 
𝑡

𝑇
=

𝜋

6

2𝜋
⇒ 𝑡 =

𝑇

12
⇒ 𝑡 =

2𝜋𝑚

𝑞𝐵

12
⇒ 𝑡 =

𝝅𝒎

𝟔𝒒𝑩
 is answer of part (c). 

Part (d): In case (c), collision between the two oppoite charges is considered to be inellastic. In such a 

situationcharges on collision would become single mass, unlike the case of elastic collision. 

Therefore, result of collision is a single mass 𝑚′ = 2𝑚 and charge 𝑞′ = 𝑞 + (−𝑞) ⇒ 𝑞′ = 0. 

Therefore, as per (3)𝐹𝑚
′⃗⃗ ⃗⃗ ⃗ = (𝑞′𝑣𝐵)𝑟̂ ⇒ 𝐹𝑚

′⃗⃗ ⃗⃗ ⃗ = (0𝑣𝐵)𝑟̂ ⇒ 𝐹𝑚
′⃗⃗ ⃗⃗ ⃗ = 0. Hence, after collision onward 

motion is of a neutral particle of mass 𝟐𝒎 would move upward perpendicular to 𝒅. 



Thus, answer are (a) 
𝒒𝑩𝒅

𝟐𝒎
   (b) 

𝒅

𝟐
,

𝟑𝒅

𝟐
   (c) 

𝝅𝒎

𝟔𝒒𝑩
  (d) the particles stick together and the combined mass 

moves with constant speed 𝒗𝒎 along the straight line drawn upward in the plane of figure through the 

point of collision 

I-76 For convenience 3D unit vectors alongwith geographical direction in 𝑖̂ − 𝑗̂ plane are 

shown in figure. Accordingly, given data vectorially is 𝐵⃗⃗ = 𝐵(−𝑗̂) = 0.20(−𝑗̂) T is 

some region in space in which a particle of mass 𝑚 = 0.020 × 10−3kg carrying a 

charge 𝑞 = 1.0 × 10−5 C is projected with a velocity 𝑣⃗ = 𝑣(−𝑖)̂.  

A charged particle in magnetic field is the case of magnetic force, which as per Lorentz’s 

Force Law, 𝐹⃗𝑚1 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚1 = 𝑞𝑣(−𝑖)̂ × 𝐵(−𝑗̂) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵(𝑘̂) …(3).  

It is seen that this magnetic force is a direction verticallu upwards. The particle would continue to perform 

uniform circular motion, it must be counter balanced by some force 𝐹⃗ such that  𝐹⃗𝑚 +  𝐹⃗ = 0. It leads to a 

condition where 𝐹⃗ = 𝑞𝑣𝐵(−𝑘̂)…(4) Since particle has a mass a nd hence it would experience a gravitational 

force 𝐹⃗ = 𝑚𝑔(−𝑘̂)…(5). Here, 𝑔 = 10 m/s2 is acceleration due to gravity which is down ward. 

Combining (4) and (5), and using the available data  𝑞𝑣𝐵 = 𝑚𝑔 ⇒ 𝑣 =
𝑚𝑔

𝑞𝐵
⇒ 𝑣 =

(0.020×10−3)×10

(1.0×10−5 )×(0.20)
. It solves 

to 𝒗 = 𝟏𝟎𝟎m/s is the answer. 

I-77 For convenience 3D unit vectors are shown in figure. Given is a 

particle describing circular motion of radius 𝑟 = 1.0 × 10−2m. Axis 

of the circular motion, since not specified, is arbitratily taken to be 

along 𝑘̂, perpendicular to the magnetic field for simplicification, in 

the region where exists a magnetic field 𝐵, which is considered such 

that 𝐵⃗⃗ = 𝐵𝑗̂ = 0.40𝑗 ̂T…(1).  

If particle, in motion in clockwise direction with a velocity 𝑣⃗, in 

uniform magnetic field 𝐵⃗⃗ then it will experience magnetic force as 

per Lorentz’s Force Law, 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵𝑛̂…(2).  Here, 

𝑛̂  is vector perpendicular to plane of vectors 𝑣⃗ and 𝐵⃗⃗. In the intant 

case a particle is taken, for convenience, to be at P where radial position vector 𝑟 is along 𝑗̂. Accordingly, 

velocity of the particle is 𝑣⃗ = 𝑣𝑖 ̂as shown in the figure. Therefore, magnetic force as per (2) would be 𝐹⃗𝑚 =

𝑞(𝑣𝑖)̂ × (𝐵𝑗̂) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵(𝑖̂ × 𝑗̂) ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵𝑘̂…(3). 

The particle during circular motion, as stipulated, would experience a centrifugal force 𝐹⃗𝑐 =
𝑚𝑣2

𝑟
𝑟̂…(4). 

Uniform cicular motion prior to application of electric would have equilibrium of forces on the particle., as 

per Newton’s First Law of Motion. And as per Newton’s Third Law of Motion while 𝐹⃗𝑚  is the cause, reation 

is 𝐹⃗𝑐. Thus, 𝐹⃗𝑚 + 𝐹⃗𝑐 = 0 ⇒ 𝑞𝑣𝐵𝑘̂ +
𝑚𝑣2

𝑟
𝑟̂ ⇒ 𝑞𝑣𝐵𝑘̂ = −

𝑚𝑣2

𝑟
𝑟̂ ⇒

𝑚𝑣2

𝑟
= 𝑞𝑣𝐵 ⇒ 𝑣 = (

𝑞

𝑚
) 𝑟𝐵…(5).  

It is desired that on the charged particle an electric field is superimpsed 𝐸⃗⃗ = 𝐸𝑒̂ = 200𝑒̂V/m…(6), so that it 

moves in a straight path. This Velocity of particle at P is 𝑣⃗ = 𝑣𝑖.,,(7). It is possible only if 𝐹⃗𝑒 = 𝑞𝐸⃗⃗ ⇒ 𝐹⃗𝑒 =

𝑞𝐸𝑒̂…(8), counter balances the cause. Accordingly, 𝐹⃗𝑚 + 𝐹⃗𝑒 = 0 ⇒ 𝑞𝑣𝐵𝑘̂ + 𝑞𝐸𝑒̂ = 0 ⇒ 𝑞𝑣𝐵𝑘̂ = −𝑞𝐸𝑒̂ ⇒

𝑞𝑣𝐵 = 𝑞𝐸 It leads to 𝑣 =
𝐸

𝐵
…(9). 

Combining (5) and (9), (
𝑞

𝑚
) 𝑟𝐵 =

𝐸

𝐵
⇒

𝑞

𝑚
=

𝐸

𝑟𝐵2…(10). Using the available data,  
𝑞

𝑚
=

𝐸

𝑟𝐵2. Using the available 

data 
𝒒

𝒎
=

200

(1.0×10−2)(0.4)2 = 𝟏. 𝟐𝟓 × 𝟏𝟎𝟓 C/kg is the answer. 



I-78 For convenience 3D unit vectors are shown in figure. It is 

required to analyze undeflected motion 𝑣⃗ = 𝑣𝑣 ⇒ 𝑣⃗ = (2.0 ×
105)𝑣̂ m/s of protron having charge 𝑞 = 𝑒 = 1.6 × 10−19 C and 

mass 𝑚 = 1.6 × 10−27kg in fields say 𝐸⃗⃗ = 𝐸𝑒̂ and 𝐵⃗⃗ = 𝐵𝑗̂ 
which are mutually perpendicular i.e. 𝑒̂ ⊥ 𝑗̂.  

However, problem states that when electric field 𝐸⃗⃗ = 𝐸𝑒̂ is 

switched off, only magneic field 𝐵⃗⃗ remains in place. And the 

charge has a circular trajectory of radius 𝑟 = 𝑟𝑟̂ ⇒ 𝑟 = 4.0 ×
10−2𝑟̂. Accordingly, problems is being first solved for motion of 

proton under magnetic field. This motion is considered in 

(𝑖̂ − 𝑘̂) plane. After this effect of electric field is considered to 

satisfy required condition of undeflected motion of the charge. 

For convenience of analysis point P on the circular trajectory, as shown in the figure,  is considered such that 

𝑣 = 𝑖 ̂…(1). 

As per Lorentz’s Force Law, 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵𝑛̂…(2).  Here, 𝑛̂ → 𝑘̂  is vector perpendicular to 

plane of vectors 𝑣⃗ and 𝐵⃗⃗. Moreover, (2) essentially requires charge to be in motion and therefore 𝑣 ≠ 0.  

For uniform circular motion of the proton while 𝐹⃗𝑚 is the cause, centrifugal force 𝐹⃗𝑐 =
𝑚𝑣2

𝑟
𝑟̂…(3) is reaction 

which creates an equilibrium of forces such that  𝐹⃗𝑚 + 𝐹⃗𝑐 = 0…(4), as per Newton’s Third Law of Motion. 

Thus, in accordance with Newton’s First Law of Motion its speed of rotation 𝑣  and radius 𝑟 of the circular 

trajectory remains constant.  

Accordingly, combining (2), (3) and (4), we have 𝑞𝑣𝐵𝑘̂ +
𝑚𝑣2

𝑟
𝑟̂ ⇒ 𝑞𝑣𝐵𝑘̂ = −

𝑚𝑣2

𝑟
𝑟̂ ⇒

𝑚𝑣2

𝑟
= 𝑞𝑣𝐵. It leads 

to 𝐵 =
𝑣𝑚

𝑞𝑟
…(5).  Using the available data, 𝐵 =

(2.0×105)(1.6×10−27)

(1.6×10−19)(4.0×10−2)
⇒ 𝑩 = 𝟎. 𝟎𝟓 T, is one part of the 

answer. 

For proton to describe undeflected motion without 𝐹⃗𝑐, requires an external force that creates an equilibrium 

with with 𝐹⃗𝑚. In this case it is electrostatic force which is 𝐹⃗𝑒 = 𝑞𝐸⃗⃗ ⇒ 𝐹⃗𝑒 = 𝑞𝐸𝑒̂…(6). Accordingly combining 

(2) and (6), 𝑞𝑣𝐵𝑛̂ + 𝑞𝐸𝑒̂ = 0 ⇒ 𝑞𝑣𝐵𝑛̂ = −𝑞𝐸𝑒̂ ⇒ 𝑣 =
𝐸

𝐵
…(7). 

Combining (5) and (7), we have (
𝑞

𝑚
) 𝑟𝐵 =

𝐸

𝐵
⇒ (

𝑞

𝑚
) =

𝐸

𝑟𝐵2…(8). 

Using the available data in (6), (
1.6×10−19

1.6×10−27) =
𝐸

(4.0×10−2)𝐵2 ⇒ 𝐸 = (4.0 × 106)(0.05)2 ⇒ 𝑬 = 𝟏. 𝟎 × 𝟏𝟎𝟒 

N/C is second part of the answer. 

Thus, answers are 𝟏. 𝟎 × 𝟏𝟎𝟒 N/C and 𝟎. 𝟎𝟓 T. 

I-79 Given a particle having a charge 𝑞 = 5.0 × 10−6 C and mass 𝑚 = 5.0 × 10−12 kg is projected with a velocity 

𝑣⃗ = 𝑣𝑣 ⇒ 𝑣⃗ = 1.0 × 103𝑣̂ m/s in a magneic field 𝐵⃗⃗ = 𝐵𝑗̂ ⇒ 𝐵⃗⃗ = 5.0 × 10−3T such that magnetic field 

subtends with velocity vector an angle 𝜃 = sin−1(0.90) ⇒ sin 𝜃 = 0.90. 

This situation as shown in the figure can be analyzed by resolving velocity in two perpndicular components 

𝑣⃗ = 𝑣𝑗𝑗̂ + 𝑣𝑘𝑘̂ ⇒ 𝑣⃗ = 𝑣 cos 𝜃 𝑗̂ + 𝑣 sin 𝜃 𝑘̂…(1) is shown in the figure along with 3D unit direction vectors. 

As per Lorentz’s Force Law, 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗…(2).  Here, 𝑛̂ → 𝑘̂  is vector perpendicular to plane of vectors 

𝑣⃗ and 𝐵⃗⃗. The equation (2) essentially requires charge to be in motion and therefore 𝑣 ≠ 0. Therefore, 

combining (1) and (2) we have 𝐹⃗𝑚 = 𝑞𝑣𝐵(cos 𝜃 𝑗̂ + sin 𝜃 𝑘̂) × 𝑗̂ ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵(cos 𝜃 𝑗̂ × 𝑗̂ + sin 𝜃 𝑘̂ × 𝑗̂). It 

leads to 𝐹⃗𝑚 = 𝑞𝑣𝐵(0 + sin 𝜃 (−𝑖)̂)…(3). 



Analysis of (3) reveals that it is only velocity component 𝑣𝑘𝑘̂ = 𝑣 sin 𝜃 𝑘̂ 

which affects creates a 𝐹⃗𝑚 ⊥ 𝑣𝑘𝑘̂, force motion of the charge and thus 

qualifies for a uniform circular motion. While, 𝑣𝑗𝑗 ̂being along 𝐵⃗⃗ does 

not affect motion of the charge. Thus, it leads to resultant motion of 

charge which is superimposition of translation motion on circular 

motion, eventually it is of helix form which a radius and a pitch. 

Therefore, both circular motion is being analyzed to determine radius of 

the helx. This radius will be used to determine time period of circular 

motion, which in turn will help to determine pitch of helix using 

translational motion of the particle. 

Circular Motion: Magnetic force 𝐹⃗𝑚is the cause of uniform circular motion, while centrifugal force 𝐹⃗𝑐 =
𝑚𝑣2

𝑟
𝑟̂…(4) is the reaction which creates an equilibrium of forces such that  𝐹⃗𝑚 + 𝐹⃗𝑐 = 0…(5), as per 

Newton’s Third Law of Motion. Thus, in accordance with Newton’s First Law of Motion its speed of 

rotation 𝑣  and radius 𝑟 of the circular trajectory remains constant.  

Comining (3), (4) and (5), 𝑞𝑣𝐵 sin 𝜃 (−𝑖)̂ +
𝑚(𝑣 sin 𝜃)2

𝑟
𝑟̂ = 0 ⇒ 𝑟 =

𝑚𝑣 sin 𝜃

𝑞𝐵
…(6). Using the available 

data it  leads to 𝑟 =
(5.0×10−12)(1.0×103)(0.90)

(5.0×10−6)(5.0×10−3)
⇒ 𝑟 = 0.18 m hence diamteter is 36 cm is the answer 

of the first part. 

The charge is since describing circular motion of radius 𝑟 with a uniform speed 𝑣, its time period is 

𝑇 =
2𝜋𝑟

𝑣 sin 𝜃
 …(7). Hence, using available data 𝑇 =

2𝜋×0.18

(1.0×103)(0.9)
⇒ 𝑇 = 1.2 × 10−3s…(8). 

Translational Motion: While describing circular motion the charged particle continues to traverse with 

translational velocity 𝑣𝑗𝑗̂ = 𝑣 cos 𝜃 𝑗̂ and traverses along 𝑗̂ a distance 𝜆 = 𝑣𝑗 × 𝑇 ⇒ 𝜆 = 𝑣 cos 𝜃 𝑇. 

Using the available data 𝜆 = (1.0 × 103)(√1 − sin2 𝜃)(1.2 × 10−3) ⇒ 𝜆 = 1.4 × (√1 − (0.9)2) ⇒

𝜆 = 𝟎. 𝟔𝟏 m is the pitch of the helix is answer of the second part. 

Thus, answer is 36 cm and 53 cm. 

I-80 For convenience of analysis 3D unit vectorss are shown in the figure. Given is a proton having 

mass 𝑚 = 1.6 × 10−27kg and charge 𝑞 = 1.6 × 10−19 C. It is projected in magnetic field 𝐵⃗⃗ =

𝐵𝑏̂ ⇒ 𝐵⃗⃗ = 0.020𝑗.̂ Trajectory of the proton is helical with radius 𝑟 = 5.0 × 10−2m and pitch 

𝜆 = 2.0 × 10−1m. 

Let, the proton is projcted with a velocity 𝑣 making an angle 𝜃 with the magnetic field such that 

𝑣⃗ = 𝑣𝑗𝑗̂ + 𝑣𝑘𝑘̂ ⇒ 𝑣⃗ = 𝑣 cos 𝜃 𝑗̂ + 𝑣 sin 𝜃 𝑘̂…(1). 

A moving charge would experience magnetic force as per Lorentz’s 

Force Law, 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗…(2).  Here, 𝑛̂ → 𝑘̂  is vector perpendicular to 

plane of vectors 𝑣⃗ and 𝐵⃗⃗. The equation (2) essentially requires charge to 

be in motion and therefore 𝑣 ≠ 0. Therefore, combining (1) and (2) we 

have 𝐹⃗𝑚 = 𝑞𝑣𝐵(cos 𝜃 𝑗̂ + sin 𝜃 𝑘̂) × 𝑗̂ ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵(cos 𝜃 𝑗̂ × 𝑗̂ +

sin 𝜃 𝑘̂ × 𝑗̂). It leads to 𝐹⃗𝑚 = 𝑞𝑣𝐵(0 + sin 𝜃 (−𝑖)̂)…(3). 

Analysis of (3) reveals that it is only velocity component 𝑣𝑘𝑘̂ =

𝑣 sin 𝜃 𝑘̂ which affects creates a 𝐹⃗𝑚 ⊥ 𝑣𝑘𝑘̂, force motion of the charge 

and thus qualifies for a uniform circular motion. While, 𝑣𝑗𝑗 ̂being along 

𝐵⃗⃗ does not affect motion of the charge. Thus, it leads to resultant motion of charge which is superimposition 

of translation motion on circular motion, eventually it is of helix form which a radius and a pitch. 



Therefore, both circular motion is being analyzed to determine radius of the helx. This radius will be used to 

determine time period of circular motion, which in turn will help to determine pitch of helix using translational 

motion of the particle. 

Circular Motion: Magnetic force 𝐹⃗𝑚is the cause of uniform circular motion, while centrifugal force 𝐹⃗𝑐 =
𝑚𝑣2

𝑟
𝑟̂…(4) is the reaction which creates an equilibrium of forces such that  𝐹⃗𝑚 + 𝐹⃗𝑐 = 0…(5), as per 

Newton’s Third Law of Motion. Thus, in accordance with Newton’s First Law of Motion its speed of 

rotation 𝑣  and radius 𝑟 of the circular trajectory remains constant.  

Comining (3), (4) and (5), 𝑞𝑣𝐵 sin 𝜃 (−𝑖)̂ +
𝑚(𝑣 sin 𝜃)2

𝑟
𝑟̂ = 0 ⇒ 𝑣 sin 𝜃 =

(5.0×10−2)(1.6×10−19)(0.020)

1.6×10−27  

…(6). It solves into  𝑣 sin 𝜃 = 𝟏. 𝟎 × 𝟏𝟎𝟑m/s is the velocity o the proton perpendicular the  the 

magntic field, is one part of the solution. 

The charge is since describing circular motion of radius 𝑟 with a uniform speed 𝑣, its time period is 

𝑇 =
2𝜋𝑟

𝑣 sin 𝜃
 …(7). Hence, using available data 𝑇 =

2𝜋×(5.0×10−2)

(1.0×103)
⇒ 𝑇 = 3.14 × 10−4s…(8). 

Translational Motion: While describing circular motion the charged particle continues to traverse with 

translational velocity 𝑣𝑗𝑗̂ = 𝑣 cos 𝜃 𝑗̂ and traverses along 𝑗̂ a distance 𝜆 = 𝑣𝑗 × 𝑇 ⇒ 𝜆 = 𝑣 cos 𝜃 𝑇. 

Therefore, velocity of charge along the magnetic field is 𝑣 cos 𝜃 =
𝜆

𝑇
. Using the available data we have  

𝑣 cos 𝜃 =
2.0×10−1

3.14×10−4 ⇒ 𝑣 cos 𝜃 = 6.4 × 102m/s. 

Thus, answer is 𝟏. 𝟎 × 𝟏𝟎𝟑 m/s and 𝟔. 𝟒 × 𝟏𝟎𝟐m/s. 

I-81 A particle of mass 𝑚 and charge 𝑞 is released from origin, it implies that initial 

velocity is zero. Accordingly, 𝑢⃗⃗ = 𝑢𝑢̂ = 0, in a region having electric and 

magnetic fields  𝐵⃗⃗ = (−)𝐵0𝑗 ̂and 𝐸⃗⃗ = 𝐸0𝑘̂. The system with 3D-unit vectors 

is shown in the figure. 

Forces on a charged particle would influence its motion. Thus, as per 

Lorentz’s Force Law 𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗ = 𝑞(𝐸0𝑘̂ + 𝑢𝑢̂ × (−)𝐵0𝑗̂). It 

leads to 𝐹⃗ = 𝑞(𝐸0𝑘̂ − (0 × 𝐵0)𝑢̂ × 𝑗̂) ⇒ 𝐹⃗ = (𝑞𝐸0)𝑘̂ ⇒ 𝑎⃗ = (
𝑞𝐸0

𝑚
) 𝑘̂….(1). 

It is seen from (1) acceleration of the particle is along 𝑘̂ i.e. z-coordinate and, therefore, velocity of the particle 

as a function of z-coordinate,  as per kinematics, is 𝑣2 = 𝑢2 + 2𝑎𝑧…(2). Combining (1) and (2), with the 

available data, 𝑣2 = 0 + 2 (
𝑞𝐸0

𝑚
) 𝑧 ⇒ 𝒗 = √

𝟐𝒒𝑬𝟎𝒛

𝒎
 is the answer. 

I-82 Given system is shown in the figure with 3D-unit vectors for reference.In the region 

there is magmetic field 𝐵⃗⃗ = 𝐵0𝑖 ̂and electric field 𝐸⃗⃗ = 𝐸0(−𝑘̂) where 𝐸0 =
𝑉

𝑑
…(1). 

An electron having charge 𝑞 = −𝑒 is emitted with a negligible velocity 𝑢⃗⃗ = 𝑢𝑥𝑖̂ +

𝑢𝑦𝑗̂ + 𝑢𝑧𝑘̂, here 𝑢𝑥 , 𝑢𝑦 𝑎𝑛𝑑 𝑢𝑧 are negilgible. 

In the system the electron would experience force as per Lorentz’s Force Law 

combines electrostatic and magnetic forces on a charge 𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) ⇒ 𝐹⃗ = (−𝑒)(𝐸0(−𝑘̂) + 𝑣𝐵0 𝑛̂). 

It solves into 𝐹⃗ = 𝐹⃗𝐸 + 𝐹⃗𝑀 = (𝑒𝐸0)𝑘̂ − (𝑒𝑣𝐵0)𝑛̂ …(2). Here, 𝑛̂ direction of magnetic force 𝐹⃗𝑀 is 

perpendicular to vector 𝐵⃗⃗ and velocity vector 𝑣⃗. In the system since 𝑣⃗ ⊥ 𝐵⃗⃗, the factor sin 𝜃 = 1, where 𝜃 is 

the angle of 𝐵⃗⃗ w.r.t. 𝑣⃗. It forms a case of circular motion as shown in the figure. 

Ananlysis, of (2) reveals that instantaneous velocity of the electron depends upon 𝐹⃗𝐸 and consequent 

acceleration 𝑎⃗𝐸 =
𝐹⃗𝐸

𝑚𝑒
⇒ 𝑎⃗𝐸 = (

𝑒𝐸0

𝑚𝑒
) 𝑘̂…(3). Accordingly, as per kinematics velocity of electron, as it moves 

along 𝑘̂  towards plate at +𝑉 in Z-dircetion, is 𝑣2 = 𝑢𝑧
2 + 2𝑎𝐸𝑧 ⇒ 𝑣2 = 0 + 2𝑎𝐸𝑧 ⇒ 𝑣 = √2 (

𝑒𝐸0

𝑚𝑒
) 𝑧…(4). 



As regards radius of circular motion due to 𝐹⃗𝑀 the condition of equlibrium is 𝐹⃗𝑀 + 𝐹⃗𝐶 = 0 ⇒ 𝐹⃗𝑀 = −𝐹⃗𝐶, 

where 𝐹⃗𝐶 =
𝑚𝑒𝑣2

𝑟
 is the centripetal force. Accordingly, 𝑒𝑣𝐵0 =

𝑚𝑒𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑒𝑣

𝑒𝐵0
…(5). Combining (4) and (5), 

𝑟 = (
𝑚𝑒

𝑒𝐵0
) √2 (

𝑒𝐸0

𝑚𝑒
) 𝑧 ⇒ 𝑟 = √2 (

𝑚𝑒𝐸0

𝑒𝐵0
2 ) 𝑧…(6). Combining (1) and (6) 𝑟 = √2 (

𝑚𝑒
𝑉

𝑑

𝑒𝐵0
2 ) 𝑧. Here, maximimum 

value of 𝑧 → 𝑑 and, therefore, 𝑟 = √2 (
𝑚𝑒

𝑉

𝑑

𝑒𝐵0
2 ) 𝑑 ⇒ 𝑟 = √2 (

𝑚𝑒𝑉

𝑒𝐵0
2 )…(7).  

Thusm essential condition for the electron fails to reach uper plate is 𝑑 > 𝑟 ⇒ 𝒅 > √𝟐 (
𝒎𝒆𝑽

𝒆𝑩𝟎
𝟐 ),  proved.  

I-83 Given system is shown in the figure with 3D-unit vectors The coil has 100 torns 

of in rectangular shape having length 𝑙 = 5 × 10−2m and width 𝑤 = 4 × 10−2. 

The coil carries a current 𝐼 = 2 A. It is required to finf magnetic field B whereby 

the the coil exeriences a net torque 𝛤𝑛𝑒𝑡 = 0.2 Nm. 

A current carrying conductor placed in magnetic field, as [er Lorentz’s Force Law 

experiences magnetic force 𝐹⃗ = 𝐼𝑙 × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝐼𝑙𝐵 sin 𝜃 𝑛̂…(1). Here, 𝜃 is angle of 𝐵⃗⃗ w.r.t. 𝑙 and 𝑛̂ is unit 

direxction vector perpendicular to the plane containing vectors 𝑙 and 𝐵⃗⃗. It is to be noted that length vector is 

taken along the direction of the current in it. Accordingly for two opposite sides, 𝑙𝑎𝑏 = 𝑙𝑎𝑏𝑗 ̂while  𝑙𝑐𝑑 =
𝑙𝑐𝑑(−𝑗̂). Same principle is used for other two sides of the rectangular coil. 

Given is since a coil of  turns 𝑛 = 100 in shape abcd and hence to take n times the forces on each side of 

rectangle abcd, using (1). Accordingly forces – 

Side ab: 𝐹⃗𝑎𝑏 = 𝐼(𝑙𝑎𝑏𝑗̂) × (𝐵𝑗̂) ⇒ 𝐹⃗𝑎𝑏 = 𝐼𝑙𝑎𝑏𝐵(𝑗̂ × 𝑗̂) = 0, since 𝑗̂ × 𝑗̂ = 0. 

Side bc: 𝐹⃗𝑏𝑐 = 𝐼(𝑙𝑏𝑐𝑖)̂ × (𝐵𝑗̂) ⇒ 𝐹⃗𝑏𝑐 = 𝐼𝑙𝑏𝑐𝐵(𝑖̂ × 𝑗̂) ⇒ 𝐹⃗𝑏𝑐 = 𝐼𝑙𝑏𝑐𝐵(𝑘̂).. 

Side cd: 𝐹⃗𝑐𝑑 = 𝐼(𝑙𝑐𝑑(−𝑗̂)) × (𝐵𝑗̂) ⇒ 𝐹⃗𝑐𝑑 = −𝐼𝑙𝑐𝑑𝐵(𝑗̂ × 𝑗̂) = 0, since 𝑗̂ × 𝑗̂ = 0. 

Side da: 𝐹⃗𝑑𝑎 = 𝐼(𝑙𝑑𝑎(−𝑖)̂) × (𝐵𝑗̂) ⇒ 𝐹⃗𝑑𝑎 = −𝐼𝑙𝑑𝑎𝐵(𝑖̂ × 𝑗̂) ⇒ 𝐹⃗𝑑𝑎 = 𝐼𝑙𝑏𝑐𝐵(−𝑘̂). 

It is to be noted that while 𝐹⃗𝑎𝑏 and 𝐹⃗𝑐𝑑 the other two forces 𝐹⃗𝑏𝑐 and 𝐹⃗𝑑𝑎 are- 

(a) equal in magnitude 𝐹𝑏𝑐 = 𝐹𝑑𝑎 = 𝐼𝑙𝑏𝑐𝐵,  

(b) opposite directions 

(c) seperated by a distance equal to width of the coil 𝑤. 

(d) The above three are a valid case of a torque on the turn of the coil. 

Accordingly, torque on the couple 𝛤⃗ = 𝑤⃗⃗⃗ × 𝐹⃗ ⇒ 𝛤⃗ = 𝑙𝑎𝑏 × 𝐹⃗𝑏𝑐 ⇒ 𝛤⃗ = (𝑙𝑎𝑏𝑗̂) × (𝐼𝑙𝑏𝑐𝐵𝑘̂). It further solves 

to 𝛤⃗ = 𝐼𝑙𝑎𝑏𝑙𝑏𝑐𝐵(𝑗̂ × 𝑘̂) ⇒ 𝛤⃗ = 𝐼𝐴𝐵𝑖.̂..(2). Here, 𝐴 = 𝐼𝑙𝑎𝑏𝑙𝑏𝑐…(3), is the area of turns of the coil. Given that 

the coil has 𝑛 turns of same area and hence net torque would be 𝛤⃗𝑛𝑒𝑡 = 𝑛𝛤⃗ ⇒ 𝛤⃗𝑛𝑒𝑡 = 𝑛𝐼𝐴𝐵𝑖̂ ⇒ 𝐵 =
𝛤𝑛𝑒𝑡

𝑛𝐼𝐴
…(4). 

Using the available data, 𝐵 =
0.2

100×2×((5×10−2)(4×10−2))
⇒ 𝑩 = 𝟎. 𝟓T is the answer. 

N.B.: Equation (2) can also be written as 𝛤⃗ = 𝐼𝐴𝐵𝑖̂ = 𝐼𝐴 × 𝐵⃗⃗ …(5). In this case 𝐴 = 𝐴𝑎̂ where unit vector 𝑎̂ 

is along perpendicular to the area A such that for observer if current in the loop is anti-clockwise then  𝑎̂ is 

(+)ve i.e. towards the observer. Whereas, if current in the loop is clockwise then  𝑎̂ is (-)ve i.e. away from the 

observer.  

In the instant case, as shown in the figure, when we observe the coil from the top current is clockwise and 

hence 𝑎̂ = (−𝑘̂). Accordingly, 𝛤⃗ = 𝐼𝐴(−𝑘̂) × (𝐵𝑗̂) ⇒ 𝛤⃗ = 𝐼𝐴𝐵(−𝑘̂) × (𝑗̂) ⇒ 𝛤⃗ = 𝐼𝐴𝐵𝑖…̂(6). It is seen that 

conclusion at (6) conforms to (2), used to solvethe problem.  



Thus, equation (6) alongwith direction vector of area can be use as takeaway for handling problems 

involving torque experienced by a current carrying coil placed in uniform magnetic field. 

I-84 Given system is shown in the figure alongwith 3D-Unit vectors. 

It comprises of a circular coil of radius 𝑟 = 2.0 × 10−2m having 

turns 𝑛 = 50, carrying a current 𝐼 = 5.0 A placed in magnetic 

field 𝐵⃗⃗ = 0.20𝑗.̂ 

The area of the coil is 𝐴 = (𝜋𝑟2)𝑎̂ …(1), where 𝑎̂ is the unit 

direction vector of the area. Accordingly, torque experienced by 

the coil is 𝛤⃗ = (𝑛𝐼)𝐴 × 𝐵⃗⃗ ⇒ 𝛤⃗ = (𝑛𝐼𝐴𝐵)𝑎̂ × 𝑗…̂(2). 

Taking position of the coil such that it forms an angle 𝜃 with the 

magnetic field, angle of  𝐵⃗⃗ relative to the area vector 𝑎̂ will be 𝛼 =
𝜋

2
+ 𝜃...(3). Accordingly, equation (2) 

transforms into 𝛤⃗ = (𝑛𝐼𝐴𝐵) sin 𝛼 (𝑖̂)…(4). 

In (4) the only variable is 𝛼 =
𝜋

2
+ 𝜃 and maximum torque would occur for sin 𝛼 = 1 ⇒ 𝛼 =

𝜋

2
⇒ 𝜃 = 0…(5). 

It implies that the plane of the coil is parallel to the magnetic field.  

Nm. 

Accordingly, maximum torque is 𝛤𝑚𝑎𝑥 = 𝑛𝐼𝐴𝐵. Using the available data, 𝛤𝑚𝑎𝑥 = 50 × 5.0 × 𝜋 ×
(2.0 × 10−2)2 × 0.20 = 6.24 × 10−2 N-m say 𝟔. 𝟐 × 𝟏𝟎−𝟐N-m is the answer of part (a). 

Position of the coil experiencing torque half of the maximum 𝛤 = (𝑛𝐼𝐴𝐵) sin 𝛼 ⇒ 𝛤 = 𝛤𝑚𝑎𝑥 sin 𝛼 ⇒ 𝛤 =
𝛤𝑚𝑎𝑥

2
⇒ sin 𝛼 =

1

2
⇒

𝜋

2
+ 𝜃 =

𝜋

6
⇒ 𝜃 = |

𝜋

2
−

𝜋

6
| ⇒ 𝜃 =

𝜋

3
 or 600 is answer of the part (b). 

Thus, answers are (a)  𝟔. 𝟐 × 𝟏𝟎−𝟐N-m,  (b) 600. 

N.B.: This problem has been deliberately solved using derivation From First-principle in illustrations. It is 

believed that it will help students to resort to phased practice of solving problems, and develop required 

proficiency, accuracy and speed to achieve their vision. 

I-85 Given system is shown in the figure with 3D-unit vectors. The rectangular loop 

has length 𝑙 = 2.0 × 10−1m and width 𝑤 = 1.0 × 10−1. The coil carries a current 

𝐼 = 5.0 A. It is required to finf magnetic field 𝐵⃗⃗ = 0.20𝑗 T. 

A current carrying conductor placed in magnetic field, as [er Lorentz’s Force Law 

experiences magnetic force 𝐹⃗ = 𝐼𝑙 × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝐼𝑙𝐵 sin 𝜃 𝑛̂…(1). Here, 𝜃 is angle 

of 𝐵⃗⃗ w.r.t. 𝑙 and 𝑛̂ is unit direxction vector perpendicular to the plane containing vectors 𝑙 and 𝐵⃗⃗. It is to be 

noted that length vector is taken along the direction of the current in it. Accordingly for two opposite sides, 

𝑙𝑎𝑏 = 𝑙𝑎𝑏 𝑗̂ while  𝑙𝑐𝑑 = 𝑙𝑐𝑑(−𝑗̂). Same principle is used for other two sides of the rectangular coil. 

Thus, forces on each side of rectangle abcd, using (1) are – 

Side ab: 𝐹⃗𝑎𝑏 = 𝐼(𝑙𝑎𝑏𝑗̂) × (𝐵𝑗̂) ⇒ 𝐹⃗𝑎𝑏 = 𝐼𝑙𝑎𝑏𝐵(𝑗̂ × 𝑗̂) = 0, since 𝑗̂ × 𝑗̂ = 0. 

Side bc: 𝐹⃗𝑏𝑐 = 𝐼(𝑙𝑏𝑐𝑖)̂ × (𝐵𝑗̂) ⇒ 𝐹⃗𝑏𝑐 = 𝐼𝑙𝑏𝑐𝐵(𝑖̂ × 𝑗̂) ⇒ 𝐹⃗𝑏𝑐 = 𝐼𝑙𝑏𝑐𝐵(𝑘̂).. 

Side cd: 𝐹⃗𝑐𝑑 = 𝐼(𝑙𝑐𝑑(−𝑗̂)) × (𝐵𝑗̂) ⇒ 𝐹⃗𝑐𝑑 = −𝐼𝑙𝑐𝑑𝐵(𝑗̂ × 𝑗̂) = 0, since 𝑗̂ × 𝑗̂ = 0. 

Side da: 𝐹⃗𝑑𝑎 = 𝐼(𝑙𝑑𝑎(−𝑖)̂) × (𝐵𝑗̂) ⇒ 𝐹⃗𝑑𝑎 = −𝐼𝑙𝑑𝑎𝐵(𝑖̂ × 𝑗̂) ⇒ 𝐹⃗𝑑𝑎 = 𝐼𝑙𝑏𝑐𝐵(−𝑘̂). 

Therefore, net force on the current carrying loop placed in magnetic field is 𝐹⃗ = 𝐹⃗𝑎𝑏 + 𝐹⃗𝑏𝑐 + 𝐹⃗𝑐𝑑 + 𝐹⃗𝑑𝑎. It 

leads to 𝐹⃗ = 0 + 𝐼𝑙𝑏𝑐𝐵(𝑘̂) + 0 + 𝐼𝑙𝑏𝑐𝐵(−𝑘̂) ⇒ 𝐹⃗ = 𝟎 is answer of the part (a). 

Accordingly, torque on the couple 𝛤⃗ = 𝑤⃗⃗⃗ × 𝐹⃗ ⇒ 𝛤⃗ = 𝑙𝑎𝑏 × 𝐹⃗𝑏𝑐 ⇒ 𝛤⃗ = (𝑙𝑎𝑏𝑗̂) × (𝐼𝑙𝑏𝑐𝐵𝑘̂). It further solves 

to 𝛤⃗ = 𝐼𝑙𝑎𝑏𝑙𝑏𝑐𝐵(𝑗̂ × 𝑘̂) ⇒ 𝛤⃗ = 𝐼𝐴𝐵𝑖.̂..(2). Here, 𝐴 = 𝐼𝑙𝑎𝑏𝑙𝑏𝑐…(3), is the area of turns of the coil. Given that 



the coil has 𝑛 turns of same area and hence net torque would be 𝛤⃗𝑛𝑒𝑡 = 𝑛𝛤⃗ ⇒ 𝛤⃗𝑛𝑒𝑡 = 𝑛𝐼𝐴𝐵𝑖̂ ⇒ 𝐵 =
𝛤𝑛𝑒𝑡

𝑛𝐼𝐴
…(4). 

Using the available data, 𝐵 =
0.2

100×2×((5×10−2)(4×10−2))
⇒ 𝑩 = 𝟎. 𝟓T is the answer of part (a) 

As regards the torque acting on the loop, extrapolation of Lorentz’s Force law leads to 𝛤⃗ = 𝐼𝐴𝐵𝑖̂ = 𝐼𝐴 × 𝐵⃗⃗ 

…(5). In this case 𝐴 = 𝐴𝑎̂ where unit vector 𝑎̂ is along perpendicular to the area A such that for observer if 

current in the loop is anti-clockwise then  𝑎̂ is (+)ve i.e. towards the observer. Whereas, if current in the loop 

is clockwise then  𝑎̂ is (-)ve i.e. away from the observer.  

In the instant case, as shown in the figure, when we observe the coil from the top current is clockwise and 

hence 𝑎̂ = (−𝑘̂). Accordingly, 𝛤⃗ = 𝐼𝐴(−𝑘̂) × (𝐵𝑗̂) ⇒ 𝛤⃗ = 𝐼𝐴𝐵(−𝑘̂) × (𝑗̂) ⇒ 𝛤⃗ = 𝐼𝐴𝐵𝑖…̂(6). Using the 

available data 𝛤 = 𝐼𝐴𝐵 ⇒  𝛤 = 5.0 × ((2.0 × 10−1) × (1.0 × 10−1)) × 0.20 ⇒  𝛤 = 𝟎. 𝟎𝟐 Nm on the 

shorter side is the answer of part (a) 

Thus , answers are (a) Zero    (b) 0.02 Nm parallel to the shorter side 

I-86 A coil having turns 𝑛 = 500 and carrying current 𝐼 = 1.0 A placed in a magnetic 

field 𝐵 = 0.40 T and axis of the coil makes an angle 𝜃 = 300, as shown in the figure. 

Torque experienced by coil, using Lorentz’s Force Law, is 𝛤⃗ = 𝑛𝐼𝐴 × 𝐵⃗⃗ ⇒ 𝛤 =

𝑛𝐼𝐴𝐵 sin 𝜃…(1). Here, 𝐴 is the area vector whose magnitude is 𝐴 = 𝜋𝑟2, given that 

𝑟 = 2.0 × 10−2m. 

Using available data in (1) we have  𝛤 = 500 × 1.0 × (𝜋 × (2.0 × 10−2)2) × 0.40 ×
sin 300 ⇒ 𝛤 = 𝟎. 𝟏𝟑 Nm is the answer. 

I-87 Given is a circular loop made of wire of length 𝐿. Hence, radius of the 

loop is such that 𝐿 = 2𝜋𝑟 ⇒ 𝑟 =
𝐿

2𝜋
. Hence, area of the coil is 𝐴 = 𝜋𝑟2 ⇒

𝐴 = 𝜋 (
𝐿

2𝜋
)

2
⇒ 𝐴 =

𝐿2

4𝜋
…(1) Coil is placed in magnetic field 𝐵 such that 

plane of the coil is parallel to magnetic field. It leads to angle between 

area vector, which is ⊥to the plane of the coil leading to 𝜃 =
𝜋

2
…(2). 

Torque experienced by a loop, using Lorentz’s Force Law, is 𝛤⃗ = 𝑖𝐴 ×

𝐵⃗⃗ ⇒ 𝛤 = 𝑖𝐴𝐵 sin 𝜃…(3). Applying (3) to both the cases. 

Circular Loop: Taking area as in (1), using (3), torque is  𝛤 = 𝑖 (
𝐿2

4𝜋
) 𝐵 sin

𝜋

2
⇒ 𝛤 =

𝒊𝑳𝟐𝑩

𝟒𝝅
 is answer of the 

part (a). 

Square Loop: Area of the square loop made out of the same wire would be 𝐴 =
𝐿

4
×

𝐿

4
⇒ 𝐴 =

𝐿2

16
. Accordingly, 

torque is 𝛤 = 𝑖 (
𝐿2

16
) 𝐵 sin

𝜋

2
⇒ 𝛤 =

𝒊𝑳𝟐𝑩

𝟏𝟔
 is answer of the part (b). 

Thus, answers are (a)  
𝒊𝑳𝟐𝑩

𝟒𝝅
,   (b) 

𝒊𝑳𝟐𝑩

𝟏𝟔
 

I-89 Given is a non-conducting ring of radius 𝑟 and mass 𝑚 carries a uniformly distributed 

charge 𝑞. The ring is rotated with an angular velocity 𝜔 about its axis Z-Z’ as shown 

in the figure. 

Since current 𝑖 =
∆𝑄

∆𝑡
, Since, angular speed of the ring is 𝜔 = 2𝜋𝑁 ⇒ 𝑁 =

𝜔

2𝜋
, here 𝑁 

is number revolutions per second. Therefore, time of one revolution 𝑇 =
1

𝑁
⇒ 𝑇 =

2𝜋

𝜔
. 

In time ∆𝑡 = 𝑇 the perimeter of the rings passes through a point and hence charge on 

the ring passes through the point P under consideration is ∆𝑄 = 𝑞. Accordingly, 

equivalent current in the ring is 𝑖 =
𝑞

2𝜋

𝜔

⇒ 𝑖 =
𝒒𝝎

𝟐𝝅
 is the answer of part (a). 



Magnetic moment of a coil is 𝜇 = 𝑖𝐴 ⇒ 𝜇 = 𝑖𝐴𝑎̂ ⇒ 𝜇 = 𝑖𝐴 ⇒ 𝜇 = (
𝑞𝜔

2𝜋
) (𝜋𝑟2) ⇒ 𝜇 =

𝒒𝝎𝒓𝟐

𝟐
 is answer of the 

part (b). 

Angular momentum of a ring is 𝐿 = 𝐼𝜔, here moment of inertia of a ring is 𝐼 = 𝑚𝑟2. Therefore, 𝐿 = 𝑚𝑟2𝜔 ⇒

𝜔𝑟2 =
𝐿

𝑚
. Combining this in value of 𝜇 we have 𝜇 = (

𝒒

𝟐
) (

𝑳

𝒎
) ⇒ 𝝁 =

𝒒

𝟐𝒎
𝑳, hence proved. 

Thus, answers are (a)  
𝒒𝝎

𝟐𝝅
     (b) 

𝒒𝝎𝒓𝟐

𝟐
   (c) Proved. 

N.B.: Non-conducting material has a property that at normal conditions charges remain at place and do not 

flow. Therefore, current is produced by charges distributed on non-conducting geometry only when the 

geometry changes its position. In this case geometry of non-conducting is a ring and displacement of charges 

is created by angular motion of the ring about its axis. This principle can be applied to any geometry of non-

conducting material. 

I-90 Given is a non-conducting disc of radius 𝑟 and mass 𝑚 carries a uniformly distributed 

charge 𝑞. The ring is rotated with an angular velocity 𝜔 about its axis Z-Z’ as shown 

in the figure. 

Since current 𝑖 =
∆𝑄

∆𝑡
, Since, angular speed of the disc is 𝜔 = 2𝜋𝑁 ⇒ 𝑁 =

𝜔

2𝜋
, here 𝑁 

is number revolutions per second. Therefore, time of one revolution of the disc is  𝑇 =
1

𝑁
⇒ 𝑇 =

2𝜋

𝜔
. 

In time ∆𝑡 = 𝑇 the complete disc passes through a  radial OP and hence charge on the 

ring passes through the OP under consideration is ∆𝑄 = 𝑞. Accordingly, equivalent 

current in the ring is 𝑖 =
𝑞

2𝜋

𝜔

⇒ 𝑖 =
𝑞𝜔

2𝜋
…(1). 

We know that magnetic moment of a coil is 𝜇 = 𝑖𝐴…(2). Therefore, current due to distributed charge needs 

to be analyzed by decomposing the disc into elemental rings of infinitesimal thickness and then taking 

cumulative effect of all such rings. 

Accordingly let us take an elemental ring of radius 0 < 𝑥 < 𝑟 of radial thickness ∆𝑥 → 0. Therefore, charge 

on the ring ∆𝑞 = 2𝜋𝑥∆𝑥 (
𝑞

𝜋𝑟2) ⇒ ∆𝑞 =
2𝑞

𝑟2 𝑥∆𝑥….(3). Accordingly, using (1), current established due to 

angular motion of disc vis-à-vis ring is ∆𝑖 =
(

2𝑞

𝑟2𝑥∆𝑥)𝜔

2𝜋
⇒ ∆𝑖 = (

2𝑞𝜔

2𝜋𝑟2) 𝑥∆𝑥…(4). 

Combining (2) and (4), magnetic moment of the ring is ∆𝜇 = ∆𝑖(𝜋𝑥2) ⇒ ∆𝜇 = ((
2𝑞𝜔

2𝜋𝑟2) 𝑥∆𝑥) (𝜋𝑥2). Here, 

𝜋𝑥2 is the area enclosed by the ring. Accordingly, ∆𝜇 = (
𝑞𝜔

𝑟2 ) 𝑥3∆𝑥…(5). Therefore, magnetic effect of the 

disc is 𝜇 = ∫ (
𝑞𝜔

𝑟2 ) 𝑥3𝑑𝑥
𝑟

0
⇒ 𝜇 = (

𝑞𝜔

𝑟2 ) ∫ 𝑥3𝑑𝑥
𝑟

0
⇒ 𝜇 = (

𝑞𝜔

𝑟2 ) [
𝑥4

4
]

0

𝑟

⇒ 𝜇 = (
𝑞𝜔

4𝑟2) 𝑟4 ⇒ 𝜇 =
𝑞𝜔𝑟2

4
…(6). 

Angular momentum of a ring is 𝐿 = 𝐼𝜔, here moment of inertia of a ring is 𝐼 =
𝑚𝑟2

2
. Therefore, 𝐿 =

𝑚𝑟2𝜔

2
⇒

𝜔𝑟2 =
2𝐿

𝑚
…(7). Combining (6) and (7) we have 𝜇 = (

𝒒

𝟒
) (

𝟐𝑳

𝒎
) ⇒ 𝝁 =

𝒒

𝟐𝒎
𝑳, hence proved. 

N.B.: Non-conducting material has a property that at normal conditions charges remain at place and do not 

flow. Therefore, current is produced by charges distributed on non-conducting geometry only when the 

geometry changes its position. In this case geometry of non-conducting is a disc and displacement of charges 

is created by angular motion of the disc about its axis. This principle can be applied to any geometry of non-

conducting material. 



I-91 Given is a non-conducting solid sphere of radius 𝑟 and mass 𝑚 carries a uniformly 

distributed charge 𝑞. The ring is rotated with an angular velocity 𝜔 about its axis Z-Z’ as 

shown in the figure. Thus charge density in the sphere is 𝜌 =
𝑞

4

3
𝜋𝑟3

⇒ 𝜌 =
3𝑞

4𝜋𝑟3…(1). 

Since current 𝑖 =
∆𝑄

∆𝑡
…(2). Since, angular speed of the disc is 𝜔 = 2𝜋𝑁 ⇒ 𝑁 =

𝜔

2𝜋
, here 

𝑁 is number revolutions per second. Therefore, time of one revolution of the disc is  𝑇 =
1

𝑁
⇒ 𝑇 =

2𝜋

𝜔
…(3). 

In time ∆𝑡 = 𝑇 the complete sphere passes through a  line PP’ parallel to ZZ’, axis of 

rotation and hence charge on the ring passes through the OP under consideration is ∆𝑄 =

𝑞. Accordingly, equivalent current in the ring is 𝑖 =
𝑞

2𝜋

𝜔

⇒ 𝑖 =
𝑞𝜔

2𝜋
…(4). 

We know that magnetic moment of a coil is 𝜇 = 𝑖𝐴…(5). Therefore, current due to distributed charge needs 

to be analyzed by decomposing the disc into elemental cylinders of radius 0 < 𝑥 < 𝑟 of radial thickness ∆𝑥 →
0.  Here, 𝑥 = 𝑟 sin 𝜃 ⇒ ∆𝑥 = 𝑟 cos 𝜃 ∆𝜃…(6). 

Accordingly let us take an elemental cylinder of radius 0 < 𝑥 < 𝑟 of radial thickness ∆𝑥 → 0 and height ℎ =

2𝑟 cos 𝜃. Therefore, charge on the ring ∆𝑞 = (2𝜋𝑥∆𝑥 × ℎ)𝜌 ⇒ ∆𝑞 = (2𝜋𝑥∆𝑥 × 2𝑟 cos 𝜃) (
𝑞

4

3
𝜋𝑟3

). It leads to 

∆𝑞 =
3𝑞

𝑟2 cos 𝜃 (𝑟 sin 𝜃)(𝑟 cos 𝜃 ∆𝜃) ⇒ ∆𝑞 = 3𝑞 cos2 𝜃 sin 𝜃 ∆𝜃…(7). Let, cos 𝜃 = 𝑢 ⇒ − sin 𝜃 ∆𝜃 = ∆𝑢 

…(8). Combining (7) and (8), we get ∆𝑞 = −3𝑞𝑢2∆𝑢…(9). 

Combining (2), (3) and (9), current in the cylinder is ∆𝑖 =
∆𝑞

𝑇
⇒ ∆𝑖 =

−3𝑞𝑢2∆𝑢
2𝜋

𝜔

⇒ ∆𝑖 = −
3𝑞𝜔

2𝜋
𝑢2∆𝑢…(10). 

Therefore, as per (5) magnet moment of the elemental cylinder is ∆𝜇 = ∆𝑖𝐴 ⇒ ∆𝜇 = (−
3𝑞𝜔

2𝜋
𝑢2∆𝑢) (𝜋𝑥2) 

…(11).  

Combining (6) in (11), ∆𝜇 = (−
3𝑞𝜔

2
𝑢2∆𝑢) (𝑟2 sin2 𝜃) ⇒ ∆𝜇 = (−

3𝑞𝜔𝑟2

2
𝑢2∆𝑢) (1 − 𝑢2). It further solves 

into ∆𝜇 =
3𝑞𝜔𝑟2

2
(𝑢4 − 𝑢2∆𝑢)∆𝑢…(12). Integrating (12), 𝜇 =

3𝑞𝜔𝑟2

2
(

𝑢5

5
−

𝑢3

3
)…(13). Reverting back to the 

variable 𝑢 → cos 𝜃 and limits of 𝜃 = 0 to 𝜃 =
𝜋

2
 we get 𝜇 = −

3𝑞𝜔𝑟2

2
[

cos5 𝜃

5
−

cos3 𝜃

3
]

0

𝜋

2
. It, further, reduces to 

𝜇 =
3𝑞𝜔𝑟2

2
(− (

1

5
−

1

3
)) ⇒ 𝜇 =

3𝑞𝜔𝑟2

2
(

1

3
−

1

5
) =

3𝑞𝜔𝑟2

2
(

2

15
) ⇒ 𝜇 =

𝑞𝜔𝑟2

5
…(14) 

Angular momentum of a ring is 𝐿 = 𝐼𝜔, here moment of inertia of a sphere about its axis is 𝐼 =
2𝑚𝑟2

5
. 

Therefore, 𝐿 =
2𝑚𝑟2𝜔

5
⇒ 𝜔𝑟2 =

5𝐿

2𝑚
…(15). Combining (14) and (15) we have 𝜇 = (

𝒒

𝟓
) (

𝟓𝑳

𝟐𝒎
) ⇒ 𝝁 =

𝒒

𝟐𝒎
𝑳, 

hence proved. 

N.B.: Non-conducting material has a property that at normal conditions charges remain at place and do not 

flow. Therefore, current is produced by charges distributed on non-conducting geometry only when the 

geometry changes its position. In this case geometry of non-conducting is a disc and displacement of charges 

is created by angular motion of the disc about its axis. This principle can be applied to any geometry of non-

conducting material. 
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