LET US DO SOME PROBLEMS-XXXI

Prof. SB Dhar

Mathematical Olympiad is organized in different stages like Indian Olympiad Qualifier in Mathematics (IOQM), Indian National Mathematical Olympiad (INMO), Orientation Cum Selection Camps (OCSC), Pre Departure Camp, and International Olympiad.

Mathematical Olympiad in India is jointly organised by the Mathematics Teachers Association of India (MTAI), Indian Association of Physics Teachers (IAPT) and Homi Bhabha Centre for Science Education (Tata Institute of Fundamental Research)-HBCSE (TIFR).

Some problems from Indian Olympiad Qualifier in Mathematics are given here to understand the standard and difficulty level of the questions.

Q1. Ari chooses 7 balls at random from n balls numbered 1 to n. If the probability that no two of the drawn balls have consecutive numbers equals the probability of exactly one pair of consecutive numbers in the chosen balls, find n.

Solution:

Number of ways when no two balls are consecutive $={ }^{\mathrm{n}-7+1} \mathrm{C}_{7}={ }^{\mathrm{n}-6} \mathrm{C}_{7}$
To find number of ways for exactly one pair being consecutive, let x_{0} be number of balls before $1^{\text {st }}$ selected ball.
$x_{i}(i=1$ to 6$)$ denotes number of balls between $\mathrm{i}^{\text {th }}$ and $(\mathrm{i}+1)^{\text {th }}$ balls selected and x_{7} be number of balls after $7^{\text {th }}$ ball is selected. Now $\mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5}+\mathrm{x}_{6}+\mathrm{x}_{7}=\mathrm{n}-7$

If $1^{\text {st }}$ and $2^{\text {nd }}$ selected balls are consecutive then $\mathrm{x}_{1}=0$
$\Rightarrow \mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5}+\mathrm{x}_{6}+\mathrm{x}_{7}=\mathrm{n}-7$
$\geq 0 \geq 1 \geq 1 \geq 1 \geq 1 \geq 1 \geq 0$
$\Rightarrow\left(\mathrm{x}_{0}+1\right)+\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5}+\mathrm{x}_{6}+\left(\mathrm{x}_{7}+1\right)=\mathrm{n}-5$
\Rightarrow Number of Solutions $={ }^{n-5-1} C_{7-1}={ }^{n-6} C_{6}$
So total ways in which exactly one pair is consecutive $=6 .{ }^{\mathrm{n}-6} \mathrm{C}_{6}$
Now ${ }^{\mathrm{n}-6} \mathrm{C}_{7}=6 .{ }^{\mathrm{n}-6} \mathrm{C}_{6}$
$\Rightarrow \mathrm{n}=54$

Q2. Let A and B be two finite sets such that there are exactly 144 sets which are
> subsets of A or subsets of B. Find the number of elements in $\boldsymbol{A} \cup B$.
> Solution:
> Let A contains x elements, B contains y elements and Common elements of A and B are z elements
> $\mathrm{n}(\mathrm{A})=2^{\mathrm{x}}$
> $n(B)=2^{y}$
> n(Common) $=2^{z}$
> $\Rightarrow 2^{x}+2^{y}-2^{z}=144$
> $\Rightarrow 2^{7}+2^{5}-2^{4}=144$ only possibility
> Hence
> $x+y-z=8$
> Q3. Sita and Geeta are two sisters. If Sita's age is written after Geeta's age a four digit perfect square (number) is obtained. If the same exercise is repeated after 13 years another four digit perfect square (number) will be obtained. What is the sum of the present ages of Sita and Geeta?

Solution:

Let the age of Sita be AB and that of Geeta be CD.
Given CDAB is a perfect square.
$\Rightarrow 100(C D)+A B=X^{2}$
Also
$(\mathrm{CD}+13)(\mathrm{AB}+13)=\mathrm{Y}^{2}$
$\Rightarrow 100\{(\mathrm{CD}+13)\}+(\mathrm{AB}+13)=\mathrm{Y}^{2}$
$\Rightarrow 100 \mathrm{CD}+1300+\mathrm{AB}+13=\mathrm{Y}^{2}$
$\Rightarrow X^{2}+1313=Y^{2}$
$\Rightarrow Y^{2}-X^{2}=1313$
$\Rightarrow(\mathrm{Y}-\mathrm{X})(\mathrm{Y}+\mathrm{X})=13 \times 101$
$\Rightarrow \mathrm{Y}-\mathrm{X}=13, \mathrm{Y}+\mathrm{X}=101$
$\Rightarrow \mathrm{X}=44, \mathrm{Y}=57$
$\Rightarrow 100 \mathrm{CD}+\mathrm{AB}=\mathrm{X}^{2}=44^{2}=1936$
$\Rightarrow \mathrm{CD}=19, \mathrm{AB}=36$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=55$
Q4. Find the number of positive integers n such that the highest power of 7 dividing $n!$ is 8 .

Solution:

We know that
$\left[\frac{49}{7}\right]=7$ and $\left[\frac{7}{7}\right]=1$
And
From $\left[\frac{49}{7}\right]$ to $\left[\frac{55}{7}\right]=7$
Hence only 7 positive numbers will be possible.

Q5. Let ABCD be a square with side length 100. A circle with centre C and radius $C D$ is drawn. Another circle of radius r, lying inside $A B C D$, is drawn to touch this circle externally and such that the circle also touches $A B$ and $A D$. If $=$ $m+n \sqrt{k}$, where m, n are integers and k is a prime number, find the value of $\frac{m+n}{k}$.

Solution:

From the figure,
$\mathrm{A}, \mathrm{y}, \mathrm{x}$ and C are collinear
Given
$\mathrm{AC}=100 \sqrt{2}=A Y+y x+x C=r \sqrt{2}+r+$ 100
$\Rightarrow r=100\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)=100(\sqrt{2}-1)^{2}=300-$ $200 \sqrt{2}$
$\Rightarrow \mathrm{m}=300, \mathrm{n}=200, \mathrm{k}=2$
Hence $\frac{m+n}{k}=50$
Q6. If a,b,c are positive real numbers such that $a^{2}+b^{2}=c^{2}$ and $a b=c$. Determine the value of $\left|\frac{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}{c^{2}}\right|$.

Solution:

The given expression can be re-written as
$\left|\frac{\left\{(a+b)^{2}-c^{2}\right\}\left\{c^{2}-(a-b)^{2}\right\}}{c^{2}}\right|$
$\left|\frac{\{2 a b\}\{2 a b\}}{c^{2}}\right|=\left|\frac{4 a^{2} b^{2}}{c^{2}}\right|=4$
Q7. Find the largest 2-digit number N which is divisible by 4, such that all integral power of N end with N.

Solution:

The all possible 2-digit numbers are $10,11,12, \ldots ., 98,99$
Out of these the numbers divisible by 4 are 96, 92, 88, 84,....
Largest N among them whose all integral powers of N ends with 9 is 76 As 76x7=5776
Therefore
$76 \times 76 \times 76=438976$
Q8. If a, b, c are real numbers and ($a+b-$ $5)^{2}+(b+2 c+3)^{2}+(c+3 a-10)^{2}=0$, then find the integer nearest to $a^{3}+b^{3}+c^{3}$.

Solution:

Squares of real numbers is always positive and the sum of positive numbers is never zero until they all are zero. Hence individual squares of the given equation are zero.
$\mathrm{a}+\mathrm{b}-5=0 \Rightarrow \mathrm{a}=5-\mathrm{b}$
$\mathrm{b}+2 \mathrm{c}+3=0 \Rightarrow c=\frac{-3-b}{2}$
$\mathrm{c}+3 \mathrm{a}-10=0 \Rightarrow \mathrm{c}+3 \mathrm{a}=10 \Rightarrow \frac{-3-b}{2}+$
$3(5-b)=0 \Rightarrow b=1, a=4, c=-2$
hence the required answer is 57
Q9. Let $A B C$ be an equilateral triangle with side length 10. A square PQRS is inscribed in it, with P on $A B . Q, R$ on $B C$ and S on $A C$. If the area of the square PQRS is $m+n \sqrt{k}$, where m, n are integers and k is a prime number then determine the value of $\sqrt{\frac{m+n}{k^{2}}}$.

Solution:

The height of the triangle $=\mathrm{AN}=5 \sqrt{3}$
Now, triangles APS and ABC are similar
Hence
$\frac{A M}{A N}=\frac{A P}{A B}=\frac{P S}{B C}=\frac{A S}{A C}$
$\Rightarrow \frac{A N-M N}{A N}=1-\frac{M N}{5 \sqrt{3}}=\frac{P S}{10}$
$\Rightarrow \mathrm{PS}=\frac{10 \sqrt{3}}{2+\sqrt{3}}$
$\Rightarrow \mathrm{PS}^{2}=2100-1200 \sqrt{3}$
On Comparing with $\mathrm{m}+\mathrm{n} \sqrt{k}$
$\mathrm{m}=2100, \mathrm{n}=-1200, \mathrm{k}=3$
Hence, the required answer is 10
Q10. If ABCD is a rectangle and P is a point inside it such that $A P=33, B P=16$, $D P=63$. Find $C P$.

Solution:

In the figure, O is the mid points of BD and AC.
From triangle APC, by Apollonius Theorem $\mathrm{AP}^{2}+\mathrm{CP}^{2}=2\left(\mathrm{AO}^{2}+\mathrm{OP}^{2}\right)$
From triangle BPD, by Apollonius Theorem $\mathrm{BP}^{2}+\mathrm{DP}^{2}=2\left(\mathrm{BO}^{2}+\mathrm{OP}^{2}\right)$
We know, $\mathrm{BO}=\mathrm{OA} \Rightarrow$
$\mathrm{AP}^{2}+\mathrm{CP}^{2}=\mathrm{BP}^{2}+\mathrm{DP}^{2} \Rightarrow 63^{2}+16^{2}=\mathrm{x}^{2}+33^{2} \Rightarrow \mathrm{x}=$ 56

Q11. Find the number of ordered triples (x, y, z) of real numbers that satisfy the system of equation
$x+y+z=7 ; x^{2}+y^{2}+z^{2}=27 ; x y z=5$.

Solution:

We know that
$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+z x)$
$\Rightarrow x y+y z+z x=11$ after putting all the values
From the property of Cubic Equation,
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the roots of the equation
$a^{3}-7 a^{2}+11 a-5=0$
$\Rightarrow(\mathrm{a}-1)^{2}(\mathrm{a}-5)=0$
$\Rightarrow \mathrm{a}=1,1,5$
Hence possible pairs are
$(1,1,5),(1,5,1),(5,1,1)$ i.e. 3 only
Q12. The prime numbers a, b and c are such that $a+b^{2}=4 c^{2}$. Determine the sum of all possible values of $a+b+c$.

Solution:

Given a,b,c are prime
From given equation
$(2 \mathrm{c})^{2}-(\mathrm{b})^{2}=\mathrm{a}$
$\Rightarrow(2 \mathrm{c}+\mathrm{b})(2 \mathrm{c}-\mathrm{b})=\mathrm{a}$
The possible sets of pair of values may be
1, a
a, 1
$-1,-\mathrm{a}$
-a, -1
Hence
Case I
$2 \mathrm{c}+\mathrm{b}=\mathrm{a}$ and $2 \mathrm{c}-\mathrm{b}=1$
On adding both
$4 \mathrm{c}=\mathrm{a}+1$
$\Rightarrow c=\frac{a+1}{4}, \mathrm{~b}=\frac{a-1}{2}$
Similarly,
Case II
$2 c+b=1$ is not possible as a, b, c are prime and more than 2
Case III
$2 \mathrm{c}+\mathrm{b}=-\mathrm{a}$ is also not possible as RHS is negative and LHS is positive
Case IV
$2 c+b=-1$ is also not possible
So only possibility is
a, $\frac{a+1}{4}, \frac{a-1}{2}$
hence
$\mathrm{a}+\mathrm{b}+\mathrm{c}=\frac{7 a-1}{4}=k,(k$ is an integer $)$
$\Rightarrow a=\frac{4 k+1}{7}$
When $\mathrm{k}=5, \mathrm{a}=3$
But $b=1$ that is not prime
So these values are neglected

Again when $k=12, a=7, b=3$ and $c=2$
Here all are prime
Therefore $a+b+c=12$

On putting $\mathrm{k}=19, \mathrm{a}=11, \mathrm{~b}=5, \mathrm{c}=3$
This is possible
Therefore $a+b+c=19$

On putting $\mathrm{k}=20,33,40,47, \ldots \mathrm{a}, \mathrm{b}, \mathrm{c}$ are not prime
Hence
The required result is $12+19=31$

Q13. Let $A=\{m: m$ an integer and the roots of $x^{2}+m x+2020=0$ are positive integers.\}
And $B=\{n: n$ an integer and the roots of $x^{2}+2020 x+n=0$ are negative integers?.
Suppose M is the largest element of A and L is the smallest element of B. Find the sum of digits of $M+L$.

Solution:

Let roots of $x^{2}+m x+2020=0$ be a and b Hence
$a+b=-m$, and $a b=2020$
since a and b are positive, so $a+b$ is positive i.e. m is negative
let roots of $x 2+2020 x+n=0$ be c and d hence
$\mathrm{c}+\mathrm{d}=-2020$ and $\mathrm{cd}=\mathrm{n}$
since c and d are negative hence m should be positive
now,
$\mathrm{ab}=2020=22 \times 5 \times 101=2020 \times 1=1010 \times 2=504 \mathrm{x}$
$4=404 \times 5=202 \times 10=101 \times 20$
for Maximum - $(\mathrm{a}+\mathrm{b})$, take $(101,20)$
hence $m=-(101+20)=-121$
for (c, d) to be minimum, it can be (-2019,-
1), (-2018,-2), .. (-1,-2019)
take $\mathrm{n}=-2019 \mathrm{x}-1=2019$
therefore,
$\mathrm{M}+\mathrm{L}=-121+2019=1898$
Hence the sum of the digits $=1+8+9+8=26$
Q14. Let ABC be an isosceles triangle with $A B=A C$ and in-centre I. If $A I=3$ and the distance from I to $B C$ is 2, what is the square of the length of $B C$?

Solution:

From the figure,
$S=\frac{A B+B C+C A}{2}=\sqrt{5}+2 x$
Area of triangle $=$
$\sqrt{S(S-A B)(S-B C)(S-C A)}$
$=\sqrt{(\sqrt{5}+2 x)(x)(\sqrt{5})(x)}$
Area of triangle is also $=\frac{1}{2}$ Base \times Height
$=\frac{1}{2}(2 x)(5)=5 x$

Hence,
$5 x=\sqrt{(\sqrt{5}+2 x)(x)(\sqrt{5})(x)}$
$\Rightarrow 25 x^{2}=\sqrt{5}(\sqrt{5}+2 x) x^{2}$
$\Rightarrow 25=5+2 \sqrt{5} x$
$\Rightarrow x=2 \sqrt{5}$
Hence $\mathrm{BC}^{2}=(2 \mathrm{x})^{2}=(4 \sqrt{5})^{2}=80$
Q15. The sides of a triangle arc $x, 2 x+1$ and $x+2$ for some positive rational number x. If one angle of the triangle is 60°, what is the perimeter of the triangle?

Solution:

$\operatorname{Cos} \mathrm{A}=\cos 60^{\circ}=\frac{A C^{2}+A B^{2}-B C^{2}}{2 A C \cdot A B}=$
$\frac{(2 x+1)^{2}+(x)^{2}-(x+2)^{2}}{2 x \cdot(2 x+1)}=\frac{1}{2}$
$\Rightarrow \mathrm{x}=\frac{3}{2}$
Therefore, the perimeter is $4 x+3=9$
Q16. Ria has 4 green marbles and 8 red marbles. She arranges them in a circle randomly, if the probability that no two green marbles are adjacent is $\frac{p}{q}$ where the positive integers p, q have no common factors other than 1, what is $p+q$?

Solution:

Green marbels $=4$
Red marbels $=8$
Total ways to put in circle $=(12-1)!=11$!
Number of ways no two green are
together $={ }^{8} \mathrm{P}_{4}$ (7!)
Probability $=\frac{8 P 4(7!)}{11!}=\frac{7}{33}=\frac{p}{q}$
Hence $\mathrm{p}+\mathrm{q}=40$

Q17. If x and y are positive integers such that $(x-4)(x-10)=2^{y}$, find the maximum possible value of $x+y$.

Solution:

Given
$(x-4)(x-10)=2^{y}$
Let $2^{y}=2^{\mathrm{a}} .2^{\mathrm{b}}$
Hence
$(x-4)(x-10)=2^{y}=2^{a} .2^{b}$
$\Rightarrow x-4=2^{\mathrm{a}}$ and
$\mathrm{x}-10=2^{\mathrm{b}}$
on subtraction
$6=2^{a}-2^{b}$
$\Rightarrow a=3, b=1$
On adding
$2 x-14=2^{a}+2^{b}=2^{3}+2^{1}=10$
$\Rightarrow \mathrm{x}=12$
$\Rightarrow 2^{y}=2^{\mathrm{a}} \cdot 2^{\mathrm{b}}=2^{3} \cdot 2^{1}=16=2^{4}$
$\Rightarrow \mathrm{y}=4$
Hence $x+y=12+4=16$
Q18. Two sides of a regular polygon with n sides, when extended, meet at an angle of 28°. What is the smallest possible value of n ?

Solution:

For 28^{0} angle, a turn of $28^{0}+180^{0}=208^{0}$ is needed
For 2080 turn, say we turned k times. In $\mathrm{n}-$ gon, we know that on turn in n-gon is
$\left(\frac{360}{n}\right)$ degrees
$\Rightarrow 208=\left(\frac{360}{n}\right) k$
$\Rightarrow\left(\frac{k}{n}\right)=\left(\frac{208}{360}\right)=\left(\frac{26}{45}\right)$
$\Rightarrow \mathrm{n}=45$
Q19. Let D,E,F be points on the sides $B C, C A, A B$ of a triangle $A B C$, respectively. Suppose AD, BE,CF are concurrent at P. If $P F / P C=2 / 3, P E / P B=2 / 7$ and $P D / P A=$ m / n, where m, n are positive integers with $\operatorname{gcd}(m, n)=1$. find $m+n$.

Solution:

From the figure

$$
\begin{aligned}
& \frac{P F}{P C}=\frac{2}{3} \\
& \frac{P E}{P B}=\frac{2}{7} \\
& \begin{array}{r}
\frac{P F}{C F} \\
\\
\end{array} \frac{P E}{B E}+\frac{P D}{A D}=1 \Rightarrow \frac{P D}{A D}=\frac{17}{45} \Rightarrow \frac{P D}{P A} \\
& =\frac{17}{28}
\end{aligned}
$$

Hence $\mathrm{m}+\mathrm{n}=45$

Q20. A semicircular paper is folded along a chord such that the folded circular arc is tangent to the diameter of the semicircle. The radius of the semicircle is 4 units and the point of tangency divides the diameter in the ratio 7:1. If the length of the crease (the dotted line segment in the figure.

Solution:

O_{2} is the reflection of O_{1} over X .
C_{1} and C_{2} have the same radius and the same chord is equidistant from both centres.
$\mathrm{O}_{2} \mathrm{~T}=\mathrm{r}=4 \Rightarrow \mathrm{O}_{1} \mathrm{O}_{2}=5 \Rightarrow \mathrm{O}_{2} \mathrm{X}=\frac{5}{4}$
$\Rightarrow \mathrm{PX}^{2}=\mathrm{O}_{2} \mathrm{P}^{2}-\mathrm{O}_{2} \mathrm{X}^{2}=16-\frac{25}{4}=9.75$
$\Rightarrow \mathrm{PQ}^{2}=4 \mathrm{PX}^{2}=39$

Q21. Let $A B C$ be a triangle with $\triangle B A C=$ 90° and D be the point on the side BC such that $A D{ }^{\wedge} B C$. Let r, r_{1} and r_{2} be the inradii of triangles $A B C, A B D$, and $A C D$ respectively. If r, r_{1}, and r_{2} are positive integers and one of them is 5 . find the largest possible value of $r+r_{1}+r_{2}$.

Solution:

We know that
$\frac{r_{1}}{r}=\frac{c}{a}$,
$\frac{r_{2}}{r}=\frac{b}{a}$,
$\Rightarrow \mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}{ }^{2}=\mathrm{r}^{2}$
One of the r, r_{1}, and r_{2} is 5
Therefore, $\left(\mathrm{r}^{2} \mathrm{r}_{1}+\mathrm{r}_{2}\right)$ maximum $=5+12+13=30$
Q22. Find the largest positive integer N such that the number of integers in the set $\{1,2,3, \ldots, N\}$ which are divisible by 3 is equal to the number of integers which are divisible by 5 or 7 (or both).

Solution:

Given Set of Positive Integers $=\{1,2,3, \ldots, N\}$
No. of integers divisible by $3=\left[\frac{N}{3}\right]$
No. of integers divisible by $5=\left[\frac{N}{5}\right]$
No. of integers divisible by $7=\left[\frac{N}{7}\right]$
No. of integers divisible by $35=\left[\frac{N}{35}\right]$
Hence,
No of integers divisible by 5 or $7=\mathrm{n}(5 \cup 7)$
$=\mathrm{n}(5)+\mathrm{n}(7)-\mathrm{n}(5 \cap 7)=\left[\frac{N}{5}\right]+\left[\frac{N}{7}\right]-\left[\frac{N}{35}\right]$
Given
$\left[\frac{N}{3}\right]=\left[\frac{N}{5}\right]+\left[\frac{N}{7}\right]-\left[\frac{N}{35}\right] \Rightarrow\left[\frac{N}{5}\right]+\left[\frac{N}{7}\right]=\left[\frac{N}{35}\right]+$

For $\mathrm{N}=65$, both sides are satisfied.

