LET US DO SOME PROBLEMS-XXX

Some Problems from JEE MAIN 2021

Prof. SB Dhar

Q1.	Let $a, b \in R$. If the r $\frac{x-3}{7} = \frac{y-2}{5} = \frac{z-1}{-9}$ is (Finit P(a , 6, 9) with respective b is equal to:	ect to the line			
	(a)86	(b)88	(c)84	(d)90		
	Ans(b)					
Q2.				$(d)(0,3)$ $=1, f'(0)=2$ and $f'(x) \neq 0$ of $f(1)$ lies in the interval		
	Ans (b)					
Q3.	A possible value of $(a)\frac{1}{2\sqrt{2}}$	$\tan\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right) \text{ is:}$ $(b)\frac{1}{\sqrt{7}}$	$(c)\sqrt{7}-1$	$(d)2\sqrt{2}-1$		
	Ans(b)					
Q4.	The probability that two elements in their $(a)\frac{65}{27}$		d subsets of the set $\{1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	(d) $\frac{35}{27}$		
	Ans (b)	2	2	2		
Q5.	The vector equation of the plane passing through the intersection of the planes					
	$\vec{r} \cdot (\hat{\imath} + \hat{\jmath} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{\imath} - 2\hat{\jmath}) = -2$, and the point $(1,0,2)$ is: (a) $\vec{r} \cdot (\hat{\imath} - 7\hat{\jmath} + 3\hat{k}) = \frac{7}{3}$ (b) $\vec{r} \cdot (\hat{\imath} + 7\hat{\jmath} + 3\hat{k}) = 7$ (c) $\vec{r} \cdot (3\hat{\imath} + 7\hat{\jmath} + 3\hat{k}) = 7$ (d) $\vec{r} \cdot (\hat{\imath} + 7\hat{\jmath} + 3\hat{k}) = \frac{7}{3}$					
	Ans (b)					
Q6.	If P is a point on the parabola $y = x^2 + 4$ which is closest to the straight line $y = 4x - 1$, then the coordinates of P are:					
	(a)(-2,8)	(b)(1,5)	(c)(3,13)	(d)(2,8)		

Ans(d)

Q7. Let a,b,c be in arithmetic progression. Let the centroid of the triangle with vertices (a,c), (2,b) and (a,b) be $\left(\frac{10}{3},\frac{7}{3}\right)$. If α , β are the roots of the equation $ax^2+bx+1=0$, then the value of $\alpha^2 + \beta^2 - \alpha\beta$ is:

(a)
$$\frac{71}{256}$$

(b)
$$-\frac{69}{256}$$
 (c) $\frac{69}{256}$

$$(c)\frac{69}{256}$$

(d)
$$-\frac{71}{256}$$

Ans(d)

The value of the integral $\int_{1}^{3} [x^2 - 2x - 2] dx$, where [x] denotes the greatest integer less Q8. than or equal to x, is:

(c)
$$-\sqrt{2} - \sqrt{3} - 1$$
 (d) $-\sqrt{2} - \sqrt{3} + 1$

(d)
$$-\sqrt{2} - \sqrt{3} + 1$$

Ans(c)

Q9. Let $f:R \rightarrow R$ be defined as

$$f(x) = \begin{cases} -55x, & \text{if } x < -5\\ 2x^3 - 3x^2 - 120x, & \text{if } -5 \le x \le 4\\ 2x^3 - 3x^2 - 36x - 336, & \text{if } x > 4 \end{cases}$$

Let $A = \{x \in R : f \text{ is increasing}\}$. Then A is equal to:

$$(a)(-5,-4) \cup (4,\infty)$$

$$(b)(-5,∞)$$

$$(c)(-\infty,-5) \cup (4,\infty)$$
 $(d)(-\infty,-5) \cup (-4,\infty)$

$$(d)(-\infty,-5) \cup (-4,\infty)$$

Ans(a)

If the curve $y=ax^2+bx+c$, $x \in \mathbb{R}$ passes through the point (1,2) and the tangent line to this curve at origin is y=x, then the possible values of a,b,c are:

(a)
$$a=1$$
, $b=1$, $c=0$

(b)
$$a=-1$$
, $b=1$, $c=1$

(c)
$$a=1$$
. $b=0$, $c=1$

(d)
$$a = \frac{1}{2}$$
, $b = \frac{1}{2}$, $c = 1$

Ans(a)

The negation of the statement $\sim p \land (p \lor q)$ is: O11.

(b)
$$p \land \sim q$$
 (c) $\sim p \lor q$

Ans(d)

For the system of linear equations: x-2y=1, x-y+kz=-2, ky+4z=6, $k \in \mathbb{R}$. O12.

Consider the following statements:

- (A)the system has unique solution if $k \neq 2$, $k \neq -2$
- (B) the system has unique solution if k=-2

	 (C) the system has unique solution if k=2 (D) the system has no solution if k=2 (E) the system has infinite number of solutions if k≠ -2 						
		ng statements are corre (b)C and D only		(d) A and E only			
	Ans(c)						
Q13. For which of the following curves, the line $x + \sqrt{3}y = 2\sqrt{3}$ is the tangent a							
	$\left(\frac{3\sqrt{3}}{2}, \frac{1}{2}\right)?$ (a) $x^2 + 9y^2 = 9$	(b) $2x^2-8y^2=9$	$(c) y^2 = \frac{1}{6\sqrt{3}}x$	$(d)x^2+y^2=7$			
	Ans(a)						
Q14.	14. The angle of elevation of a jet plane from a point A on the ground is 60° . After a 20 seconds at the speed of 432 km/hour, the angle of elevation changes to 30° . If plane is flying at a constant height, then its height is: (a) $1200\sqrt{3}m$ (b) $1800\sqrt{3}m$ (c) $3600\sqrt{3}m$ (d) $2400\sqrt{3}m$						
	, ,	(b) 1000 y 3m	(c) 3000 y 3m	(d) 2400 y 3 m			
	Ans(a)						
Q15.	symmetric matrix. Th	nen the system of linea known variables and O	A is symmetric matrix and B is skew- r equations (A ² B ² -B ² A ²)X=O, where X is 3×1 is a 3×1 null matrix, has: (b)exactly two solutions (d)no solution				
	Ans(c)						
Q16.	If $n \ge 2$ is a positive in $(a) \frac{n(n+2)(n+1)^2}{12}$ $(c) \frac{n(n+1)(2n+1)}{6}$	nteger, then the sum of	the series ${}^{n+1}C_2+2({}^2C_2)$ (b) $\frac{n(n-1)(2n+1)}{6}$ (d) $\frac{n(2n+1)(3n+1)}{6}$	$c_2 + {}^3C_2 + {}^4C_2 + \dots + {}^nC_2$) is:			
	Ans(c)						
Q17.	what value of b, $\int_{1}^{2} f$	ses through the point (1) $f(x)dx = \frac{62}{5}?$ $f(x) = \frac{31}{5}$	(d)10 and satisfies $x \frac{dy}{dx}$	$+y = bx^4$, then for			
	Ans(d)						

The area of the region: $R=\{(x, y): 5x^2 \le y \le 2x^2+9\}$ is:

(a) $9\sqrt{3}$

(b) $12\sqrt{3}$

(c) $11\sqrt{3}$

(d) $6\sqrt{3}$

Ans(b)

Q19. The number of the real roots of the equation $(x + 1)^2 + |x - 5| = \frac{27}{4}$ is

(a)2

(b)3

(c)4

(d)0

Ans (a)

Q20. If $a+\alpha=1$, $b+\beta=2$ and $af(x)+\alpha f\left(\frac{1}{x}\right)=bx+\frac{\beta}{x}$, $x\neq 0$, then the value of the

expression $\frac{f(x)+f(\frac{1}{x})}{x+\frac{1}{x}}$ is

(a)2

(c)4

(d)0

Ans(a)

Q21. Let $= \sqrt{-1}$. If $\frac{(-1+i\sqrt{3})^{21}}{(1-i)^{24}} + \frac{(1+i\sqrt{3})^{21}}{(1+i)^{24}} = k$ and n = [|k|] be the greatest integral part of

|k|. Then $\sum_{j=0}^{n+5} (j+5)^2 - \sum_{j=0}^{n+5} (j+5)$ is equal to (a)310 (b)301 (c)103 (d)136

Ans(a)