LET US DO SOME PROBLEMS-XXX

Some Problems from JEE MAIN 2021

Prof. SB Dhar

Q1. Let $a, b \in R$. If the mirror image of the point $\mathrm{P}(a, 6,9)$ with respect to the line $\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is (20, $b,-1-9$), then $|a+b|$ is equal to:
(a) 86
(b) 88
(c) 84
(d) 90

Ans(b)
Q2. Let f be a twice differentiable function defined on R such that $f(0)=1, f^{\prime}(0)=2$ and $f^{\prime}(x) \neq 0$ for all $\mathrm{x} \in \mathrm{R}$. If $\left|\begin{array}{cc}f(x) & f^{\prime}(x) \\ f^{\prime}(x) & f^{\prime \prime}(x)\end{array}\right|=0$, for all $\mathrm{x} \in \mathrm{R}$, then the value of $f(1)$ lies in the interval
(a) $(9,12)$
(b) $(6,9)$
(c) $(3,6)$
(d) $(0,3)$

Ans (b)
Q3. A possible value of $\tan \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)$ is:
(a) $\frac{1}{2 \sqrt{2}}$
(b) $\frac{1}{\sqrt{7}}$
(c) $\sqrt{7}-1$
(d) $2 \sqrt{2}-1$

Ans(b)

Q4. The probability that two randomly selected subsets of the set $\{1,2,3,4,5\}$ have exactly two elements in their intersection, is:
(a) $\frac{65}{2^{7}}$
(b) $\frac{135}{2^{9}}$
(c) $\frac{65}{2^{9}}$
(d) $\frac{35}{2^{7}}$

Ans (b)
Q5. The vector equation of the plane passing through the intersection of the planes
$\vec{r} \cdot(\hat{\imath}+\hat{\jmath}+\hat{k})=1$ and $\vec{r} .(\hat{\imath}-2 \hat{\jmath})=-2$, and the point $(1,0,2)$ is:
(a) $\vec{r} \cdot(\hat{\imath}-7 \hat{\jmath}+3 \hat{k})=\frac{7}{3}$
(b) $\vec{r} \cdot(\hat{\imath}+\widehat{\jmath \jmath}+3 \hat{k})=7$
(c) $\vec{r} \cdot(3 \hat{\imath}+7 \hat{\jmath}+3 \hat{k})=7$
(d) $\vec{r} \cdot(\hat{\imath}+7 \hat{\jmath}+3 \hat{k})=\frac{7}{3}$

Ans (b)

Q6. If P is a point on the parabola $y=x^{2}+4$ which is closest to the straight line $y=4 x-1$, then the coordinates of P are:
(a) $(-2,8)$
(b) $(1,5)$
(c) $(3,13)$
(d) $(2,8)$

Ans (d)

Q7. Let a, b, c be in arithmetic progression. Let the centroid of the triangle with vertices (a, c), $(2, b)$ and (a, b) be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If α, β are the roots of the equation $a x^{2}+b x+l=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is:
(a) $\frac{71}{256}$
(b) $-\frac{69}{256}$
(c) $\frac{69}{256}$
(d) $-\frac{71}{256}$

Ans(d)

Q8. The value of the integral $\int_{1}^{3}\left[x^{2}-2 x-2\right] d x$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x , is :
(a)-4
(b) -5
(c) $-\sqrt{2}-\sqrt{3}-1$
(d) $-\sqrt{2}-\sqrt{3}+1$

Ans(c)
Q9. Let $f: R \rightarrow R$ be defined as
$f(x)=\left\{\begin{array}{c}-55 x, \text { if } x<-5 \\ 2 x^{3}-3 x^{2}-120 x, \text { if }-5 \leq x \leq 4 \\ 2 x^{3}-3 x^{2}-36 x-336, \text { if } x>4\end{array}\right.$
Let $A=\{x \in R$: f is increasing $\}$. Then A is equal to:
(a) $(-5,-4) \cup(4, \infty)$
(b) $(-5, \infty)$
$(\mathrm{c})(-\infty,-5) \cup(4, \infty)$
$(d)(-\infty,-5) \cup(-4, \infty)$

Ans(a)

Q10. If the curve $y=a x^{2}+b x+c, \mathrm{x} \in \mathrm{R}$ passes through the point $(1,2)$ and the tangent line to this curve at origin is $y=x$, then the possible values of a, b, c are:
(a) $a=1, b=1, c=0$
(b) $a=-1, b=1, c=1$
(c) $a=1 . b=0, c=1$
(d) $a=\frac{1}{2}, b=\frac{1}{2}, c=1$

Ans(a)

Q11. The negation of the statement $\sim p \wedge(p \vee q)$ is:
(a) $\sim p \wedge q$
(b) $p \wedge \sim q$
(c) $\sim p \vee q$
(d) $p \vee \sim q$

Ans(d)
Q12. For the system of linear equations: $x-2 y=1, x-y+k z=-2, k y+4 z=6, \mathrm{k} \in \mathrm{R}$.
Consider the following statements:
(A)the system has unique solution if $\mathrm{k} \neq 2, \mathrm{k} \neq-2$
(B)the system has unique solution if $\mathrm{k}=-2$
(C) the system has unique solution if $\mathrm{k}=2$
(D) the system has no solution if $\mathrm{k}=2$
(E) the system has infinite number of solutions if $\mathrm{k} \neq-2$

Which of the following statements are correct?
(a)B and E only
(b)C and D only
(c)A and D only
(d) A and E only
$\boldsymbol{A n s}(\boldsymbol{c})$
Q13. For which of the following curves, the line $x+\sqrt{3} y=2 \sqrt{3}$ is the tangent at the point $\left(\frac{3 \sqrt{3}}{2}, \frac{1}{2}\right)$?
(a) $x^{2}+9 y^{2}=9$
(b) $2 x^{2}-8 y^{2}=9$
(c) $y^{2}=\frac{1}{6 \sqrt{3}} x$
(d) $x^{2}+y^{2}=7$

Ans(a)

Q14. The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 20 seconds at the speed of $432 \mathrm{~km} /$ hour, the angle of elevation changes to 30°. If the jet plane is flying at a constant height, then its height is:
(a) $1200 \sqrt{3} \mathrm{~m}$
(b) $1800 \sqrt{3} \mathrm{~m}$
(c) $3600 \sqrt{3} \mathrm{~m}$
(d) $2400 \sqrt{3} \mathrm{~m}$

Ans(a)

Q15. Let A and B be 3×3 real matrices such that A is symmetric matrix and B is skewsymmetric matrix. Then the system of linear equations $\left(A^{2} B^{2}-B^{2} A^{2}\right) X=O$, where X is 3×1 column matrix of unknown variables and O is a 3×1 null matrix, has:
(a)a unique solution
(b)exactly two solutions
(c)infinitely many solutions
(d)no solution

Ans(c)

Q16. If $\mathrm{n} \geq 2$ is a positive integer, then the sum of the series ${ }^{\mathrm{n}+1} \mathrm{C}_{2}+2\left({ }^{2} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{2}+\ldots .+{ }^{\mathrm{n}} \mathrm{C}_{2}\right)$ is:
(a) $\frac{n(n+2)(n+1)^{2}}{12}$
(b) $\frac{n(n-1)(2 n+1)}{6}$
(c) $\frac{n(n+1)(2 n+1)}{6}$
(d) $\frac{n(2 n+1)(3 n+1)}{6}$

Ans(c)
Q17. If a curve $y=f(x)$ passes through the point $(1,2)$ and satisfies $x \frac{d y}{d x}+y=b x^{4}$, then for what value of $\mathrm{b}, \int_{1}^{2} f(x) d x=\frac{62}{5}$?
(a) 5
(b) $\frac{62}{5}$
(c) $\frac{31}{5}$
(d) 10

Ans(d)

Q18. The area of the region: $R=\left\{(x, y): 5 x^{2} \leq y \leq 2 x^{2}+9\right\}$ is:
(a) $9 \sqrt{3}$
(b) $12 \sqrt{3}$
(c) $11 \sqrt{3}$
(d) $6 \sqrt{3}$

Ans (b)
Q19. The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is
(a) 2
(b) 3
(c) 4
(d) 0

Ans (a)
Q20. If $a+\alpha=1, b+\beta=2$ and $a f(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0$, then the value of the expression $\frac{f(x)+f\left(\frac{1}{x}\right)}{x+\frac{1}{x}}$ is
(a)2
(b) 3
(c) 4
(d) 0

Ans(a)

Q21. Let $=\sqrt{-1}$. If $\frac{(-1+i \sqrt{3})^{21}}{(1-i)^{24}}+\frac{(1+i \sqrt{3})^{21}}{(1+i)^{24}}=k$ and $n=[|k|]$ be the greatest integral part of $|k|$. Then $\sum_{j=0}^{n+5}(j+5)^{2}-\sum_{j=0}^{n+5}(j+5)$ is equal to
(a)310
(b) 301
(c) 103
(d) 130

Ans(a)

