Typical Problems: Application of Biot-Savart's Law

Problem 1: The wire PQR shown in the figure forms an equilateral triangle. Find the magnetic field B at the center O of the triangle assuming the wire to be uniform.

Illustration: Given is a wire of length l, carrying a current i. The problem is in two parts. Given is a wire of length l, carrying a current i. The problem is in two parts.

Part (a): The wire is bent to form an equilateral triangle ABC of side length $a=\frac{l}{3}$, as shown in the figure. The point O , center of the triangle, is symmetrical to its three sides with vertices making an angle $\theta=30^{\circ}$. As discussed in Appendix-I, magnetic field at O due to current in the side AB is $\vec{B}_{\mathrm{AB}}=\frac{\mu_{0} i}{2 \pi d} \cos \theta(\hat{n}) \ldots(1)$, here $d=\frac{a}{2} \tan \theta$ is distance of point O from the side AB and $\theta=30^{\circ}$ both determined geometrically, and \hat{n} is direction of vector perpendicular to the plane of the triangle ABC . Using (1) and the available data, it leads $\vec{B}_{\mathrm{AB}}=$ $\frac{\mu_{0} i}{2 \pi\left(\frac{a}{2} \tan \theta\right)} \cos \theta(\hat{n}) \Rightarrow \vec{B}_{\mathrm{AB}}=\frac{\mu_{0} i \frac{\sqrt{3}}{2}}{\pi \frac{l 1}{3 \sqrt{3}}} \Rightarrow \vec{B}_{\mathrm{AB}}=\frac{9 \mu_{0} i}{2 \pi l}(\hat{n}) \ldots$ (2).

Current in all sides of the triangle is identical and unidirectional, i.e. anti-clockwise, hence each side w.r.t. which point O is symmetrical would produce equal and unidirectional magnetic field and hence at $\mathrm{O}, \vec{B}=3 \vec{B}_{\mathrm{AB}}$. Accordingly, magnitude of magnetic field at O is $B=3 \times \frac{9 \mu_{0} i}{2 \pi l} \Rightarrow B=\frac{27 \mu_{0} i}{2 \pi l}$ is the answer of part (a).

Part (b): In this case wire is bent in the form of a square ABCD of side length $\frac{l}{4}$, as shown in the figure. The point O , center of the square, is symmetrical to its four sides with vertices making an angle $\theta=45^{\circ}$. discussed in Appendix-I, magnetic field at O due to current in the side is $\vec{B}_{\mathrm{AB}}=\frac{\mu_{0} i}{2 \pi d} \cos \theta(\hat{n}) \ldots(1)$, here $d=\frac{a}{\sqrt{2}}$ is distance of point O from side AB and $\theta=45^{\circ}$ both determined geometrically, and \hat{n} is direction of vector perpendicular to the plane of the triangle $A B C$. Using (1) and the available data, it leads $\vec{B}_{\mathrm{AB}}=$
 $\frac{\mu_{0} i}{2 \pi\left(\frac{1}{2} \tan \theta\right)} \cos \theta(\hat{n}) \Rightarrow \vec{B}_{\mathrm{AB}}=\frac{\mu_{0} i \frac{1}{\sqrt{2}}}{\pi \frac{l}{4} \times 1} \Rightarrow \vec{B}_{\mathrm{AB}}=\frac{2 \sqrt{2} \mu_{0} i}{\pi l}(\hat{n}) \ldots$

Current in all sides of the square is identical and unidirectional, i.e. anti-clockwise, hence each side w.r.t. which point O is symmetrical would produce equal and unidirectional magnetic field and hence at $\mathrm{O}, \vec{B}=4 \vec{B}_{\mathrm{AB}}$. Accordingly, magnitude of magnetic field at O is $B=4 \times \frac{2 \sqrt{2} \mu_{0} i}{\pi l} \Rightarrow B=\frac{\mathbf{8} \sqrt{2} \mu_{0} i}{\boldsymbol{\pi} \boldsymbol{l}}$ is the answer of part (b).
Thus answers are (a) $\frac{27 \mu_{0} i}{2 \pi l}$ and (b) $\frac{8 \sqrt{2} \mu_{0} i}{\pi l}$.

Problem 2: A wire of length l is bent in the form of an equilateral triangle and carries an electric current i.
(a) Find the magnetic field B at the center.
(b) If the wire is bent in the form of a square, what would be the value of B at the center?

Illustration: Given is a wire of length l, carrying a current i. The problem is in two parts. Given is a wire of length l, carrying a current i. The problem is in two parts.
Part (a): The wire is bent to form an equilateral triangle ABC of side length $a=\frac{l}{3}$, as shown in the figure. The point O , center of the triangle, is symmetrical to its three sides with vertices making an angle $\theta=30^{\circ}$. As discussed in Appendix-I, magnetic field at O due to current in the side AB is $\vec{B}_{\mathrm{AB}}=\frac{\mu_{0} i}{2 \pi d} \cos \theta(\hat{n}) \ldots(1)$, here $d=\frac{a}{2} \tan \theta$ is distance of point O from the side $A B$ and $\theta=30^{\circ}$ both determined geometrically, and \hat{n} is direction of vector perpendicular to the plane of the triangle ABC . Using (1) and the available data, it leads $\vec{B}_{\mathrm{AB}}=$ $\frac{\mu_{0} i}{2 \pi\left(\frac{a}{2} \tan \theta\right)} \cos \theta(\hat{n}) \Rightarrow \vec{B}_{\mathrm{AB}}=\frac{\mu_{0} i \frac{\sqrt{3}}{2}}{\pi \frac{l \mid}{3 \sqrt{3}}} \Rightarrow \vec{B}_{\mathrm{AB}}=\frac{9 \mu_{0} i}{2 \pi l}(\hat{n}) \ldots$ (2).

Current in all sides of the triangle is identical and unidirectional, i.e. anti-clockwise, hence each side w.r.t. which point O is symmetrical would produce equal and unidirectional magnetic field and hence at $\mathrm{O}, \vec{B}=3 \vec{B}_{\mathrm{AB}}$. Accordingly, magnitude of magnetic field at O is $B=3 \times \frac{9 \mu_{0} i}{2 \pi l} \Rightarrow B=\frac{27 \mu_{0} i}{2 \pi l}$ is the answer of part (a).
Part (b): In this case wire is bent in the form of a square ABCD of side length $\frac{l}{4}$, as shown in the figure. The point O , center of the square, is symmetrical to its four sides with vertices making an angle $\theta=45^{\circ}$. discussed in Appendix-I, magnetic field at O due to current in the side is $\vec{B}_{\mathrm{AB}}=\frac{\mu_{0} i}{2 \pi d} \cos \theta(\hat{n}) \ldots(1)$, here $d=\frac{a}{\sqrt{2}}$ is distance of point O from side AB and $\theta=45^{\circ}$ both determined geometrically, and \hat{n} is direction of vector perpendicular to the plane of the triangle $A B C$. Using (1) and the available data, it leads $\vec{B}_{A B}=$
 $\frac{\mu_{0} i}{2 \pi\left(\frac{a}{2} \tan \theta\right)} \cos \theta(\hat{n}) \Rightarrow \vec{B}_{\mathrm{AB}}=\frac{\mu_{0} i \frac{1}{\sqrt{2}}}{\pi \frac{l}{4} \times 1} \Rightarrow \vec{B}_{\mathrm{AB}}=\frac{2 \sqrt{2} \mu_{0} i}{\pi l}(\hat{n}) .$.
Current in all sides of the square is identical and unidirectional, i.e. anti-clockwise, hence each side w.r.t. which point O is symmetrical would produce equal and unidirectional magnetic field and hence at $\mathrm{O}, \vec{B}=4 \vec{B}_{\mathrm{AB}}$. Accordingly, magnitude of magnetic field at O is $B=4 \times \frac{2 \sqrt{2} \mu_{0} i}{\pi l} \Rightarrow B=\frac{8 \sqrt{2} \mu_{0} i}{\pi l}$ is the answer of part (b).
Thus answers are (a) $\frac{27 \mu_{0} i}{2 \pi l}$ and (b) $\frac{8 \sqrt{2} \mu_{0} i}{\pi l}$.

Problem 3: A long wire carrying current i is bent to form a plane angle α. Find the magnetic field B at a distance x from the vertex.

Illustration: This problem combines asymmetry of point P w.r.t. a long wire AB bent at O at an angle α, such that point P at a distance x from the vertex O , is symmetrical to portions of wire AO and OB , as shown in the figure.
Applying Biot-Savart's Law magnetic field due current i in wire, as illustrated in Appendix-I, is $\overrightarrow{d B}=\frac{\mu_{0} i}{4 \pi} \frac{\sin \theta}{r^{2}} d l(\hat{n}) \ldots$ (1). Here, $d l$ is length of the element of wire carrying current i, r is the distance of the element from the point P at which magnetic field is to be determined, θ is the angle of the vector \vec{r} w.r.t. $\overrightarrow{d l}$ in which current i is flowing and \hat{n} is the unit direction vector of the magnetic field.
Applying (1) to the portion of wire OA wire the angle θ is clockwise direction and hence it's value is $(-)$ ve and at $\mathrm{A} \theta_{i} \rightarrow 0$ while at $\mathrm{O} \theta_{f}=-\left(\pi-\frac{\alpha}{2}\right)$. Therefore, net
 magnetic field due to wire is $\vec{B}_{A B}=\left[\int_{0}^{-\left(\pi-\frac{\alpha}{2}\right)} \frac{\mu_{0} i}{4 \pi} \frac{\sin \theta}{r^{2}} d l\right] \hat{n} \ldots$...(2). This calculation can be simplified decomposing asymmetry of point P with the wire length AO as $\mathrm{AO}=\mathrm{AN}+\mathrm{NO}$.
Accordingly, field due to wire AN is $\vec{B}_{\mathrm{AN}}=\frac{1}{2}\left(\frac{\mu_{0} i}{2 \pi b}\right)(-\hat{n})$, here $b=\mathrm{NP}=\mathrm{OP} \sin \frac{\alpha}{2} \Rightarrow b=x \sin \frac{\alpha}{2}$, is half of the field due to a long wire. Thus using the available data $\vec{B}_{\mathrm{AN}}=\frac{\mu_{0} i}{4 \pi x \sin \frac{\alpha}{2}}(-\hat{n}) \ldots(3)$. But, for portion NO it is half of the length of wire symmetrical w.r.t. P along AO. Thus, $\vec{B}_{\mathrm{NO}}=\frac{1}{2}\left(\frac{\mu_{0} i}{2 \pi b} \cos \frac{\alpha}{2}\right)(-\hat{n})$. Using the available data $\vec{B}_{\mathrm{NO}}=\frac{1}{2}\left(\frac{\mu_{0} i}{2 \pi\left(x \sin \frac{\alpha}{2}\right)} \cos \frac{\alpha}{2}\right)(-\hat{n}) \Rightarrow \vec{B}_{\mathrm{NO}}=\frac{\mu_{0} i}{4 \pi x} \cot \frac{\alpha}{2}(-\hat{n}) \ldots(4)$.
Thus, net field at P due to wire AO, combining (3) and (4) is $\vec{B}_{\mathrm{AO}}=\vec{B}_{\mathrm{AN}}+\vec{B}_{\mathrm{NO}}=\frac{\mu_{0} i}{4 \pi x \sin \frac{\alpha}{2}}(-\hat{n})+\frac{\mu_{0} i}{4 \pi x} \cot \frac{\alpha}{2}(-\hat{n})$. It leads to $\vec{B}_{\mathrm{AO}}=\frac{\mu_{0} i}{4 \pi x} \frac{\left(1+\cos \frac{\alpha}{2}\right)}{\sin \frac{\alpha}{2}}(-\hat{n}) \ldots(5)$. Here, a little trigonometric manipulation is needed such that $\frac{\left(1+\cos \frac{\alpha}{2}\right)}{\sin \frac{\alpha}{2}}=$ $\frac{\left(1+\left(2 \cos ^{2} \frac{\alpha}{4}-1\right)\right)}{2 \sin \frac{\alpha}{4} \cos \frac{\alpha}{4}}=\frac{2 \cos ^{2} \frac{\alpha}{4}}{2 \sin \frac{\alpha}{4} \cos \frac{\alpha}{4}}=\frac{\cos \frac{\alpha}{4}}{\sin \frac{\alpha}{4}}=\cot \frac{\alpha}{4} \ldots$ (6). Combining, (5) and (6), $\vec{B}_{\mathrm{AO}}=\frac{\mu_{0} i}{4 \pi x} \cot \frac{\alpha}{4}(-\hat{n}) \ldots$ (7).
It is seen from the figure that magnetic field at P due to the same current i in portion OB is symmetrical and additive to the magnetic field due to the current in AO. Thus, magnitude of the net magnetic field at P due to wire AOB is $B=2 B_{A O}=2 \times \frac{\mu_{0} i}{4 \pi x} \cot \frac{\alpha}{4} \Rightarrow B=\frac{\mu_{0} i}{2 \pi x} \cot \frac{\alpha}{4}$ is the answer.
N.B.: Complexity in the solution of the problem due to integration involved in application of Biot-Sevart's Law can be avoided by using standard formulation of magnetic field due to a long wire and a section of wire symmetrically placed about a point. It involves systematic observation of the geometry of the problem combining asymmetry into symmetries.

Problem 4: Find the magnetic field B at the center of a rectangular loop of length l and width b, carrying a current i.

Illustration: Given system is shown in the figure in which a wire in shape of rectangular loop of length l and width b is carrying a current i. It is required to determine magnetic field point P.

Symmetry in the geometry of the problem reveals that sides AB and CD each of length l are carrying current in anti-clockwise direction with the only difference point P is on the left of the current in the sides AB and such that it is in the middle of the both the wires and at a distance $d_{1}=\frac{b}{2}$
 from them.
Thus magnetic field at P due to both the wires, as per Biot-Savart's Law illustrated in Appendix I , is $\vec{B}_{\mathrm{AB}}=$ $\vec{B}_{\mathrm{CD}}=\frac{\mu_{0} i}{2 \pi} \frac{\cos \alpha}{d_{1}}(\hat{n}) \ldots(1)$, here $\sin \alpha=\frac{\mathrm{AK}}{\mathrm{AP}}=\frac{\frac{l}{2}}{\frac{\sqrt{l^{2}+b^{2}}}{2}} \Rightarrow \sin \alpha=\frac{l}{\sqrt{l^{2}+b^{2}}}$
Similar geometry in respect of sides BC and CD leads to magnetic field at P is $\vec{B}_{\mathrm{BC}}=\vec{B}_{\mathrm{DA}}=$ $\frac{\mu_{0} i}{2 \pi} \frac{\sin \beta}{d_{2}}(\hat{n}) \ldots(1)$,here $\sin \beta=\frac{\mathrm{PN}}{\mathrm{DP}}=\frac{\frac{b}{2}}{\frac{\sqrt{l^{2}+b^{2}}}{2}} \Rightarrow \sin \beta=\frac{b}{\sqrt{l^{2}+b^{2}}}$. Here, $d_{2}=\frac{l}{2}$
Thus net magnetic field at the center P is $\vec{B}=\vec{B}_{\mathrm{AB}}+\vec{B}_{\mathrm{BC}}+\vec{B}_{\mathrm{CD}}+\vec{B}_{\mathrm{DA}}=2 \frac{\mu_{0} i}{2 \pi} \frac{\sin \alpha}{d_{1}}+2 \frac{\mu_{0} i}{2 \pi} \frac{\sin \beta}{d_{2}}$.
Using the available data $\vec{B}=\left(2 \frac{\mu_{0} i}{2 \pi} \frac{l}{\sqrt{l^{2}+b^{2}}} \frac{\frac{b}{2}}{2}+2 \frac{\mu_{0} i}{2 \pi} \frac{\frac{b}{\sqrt{l^{2}+b^{2}}}}{\frac{l}{2}}\right)(\hat{n})=\frac{2 \mu_{0} i}{\pi \sqrt{l^{2}+b^{2}}}\left(\frac{l}{b}+\frac{b}{l}\right)(\hat{n}) \Rightarrow B=\frac{2 \mu_{0} i}{\pi \sqrt{l^{2}+b^{2}}} \times \frac{l^{2}+b^{2}}{b l} \Rightarrow$ $B=\frac{2 \mu_{0} i}{\pi l b} \sqrt{l^{2}+b^{2}}$ is the answer.

Problem 5: A regular polygon of n sides is formed by bending a wire of total length $2 \pi r$ which carries a current i.
(a) Find the magnetic field B at the center of the polygon.
(b) By letting $n \rightarrow \infty$, deduce the expression for the magnetic field at the center of a circular current.

Illustration: Given system of a regular polygon having sides n made out by bending a wire of total length $l=2 \pi r$ is shown in the figure. Length of each side is $a=\frac{2 \pi r}{n}$ and is carrying current i. Point P , at the center of the polygon is symmetrically placed w.r.t. each side of the polygon at a distance $d=\mathrm{AM} \cos \alpha$.
 Here, $\mathrm{AM}=\frac{a}{2}, \alpha=\frac{\theta}{2}$, where $\theta=\frac{2 \pi}{n} \Rightarrow \alpha=\frac{\pi}{n}$. Therefore, $d=\frac{a}{2} \tan \alpha \Rightarrow d=$ $\frac{a}{2} \tan \frac{\pi}{n} \ldots$ (1).
Using Biot-Savart's Law, as per Appendix-I, amgnetic field at P due current i in first side $\mathrm{A}_{1} \mathrm{~A}_{2}$ of the polygon is $\vec{B}_{1}=\frac{\mu_{0} i}{2 \pi} \frac{\cos \phi}{d}(\hat{n})$...(2). Here, again from geometry $\phi=\frac{\pi}{2}-\alpha \Rightarrow \phi=\frac{\pi}{2}-\frac{\pi}{n} \Rightarrow \tan \phi=\tan \left(\frac{\pi}{2}-\frac{\pi}{n}\right) \Rightarrow$ $\tan \phi=\cot \frac{\pi}{n} \ldots$ (3).

Each branch of the polygon would produce equal and unidirectional magnetic field at P such that magnitude of the magnetic field would be $B=n B_{1} \Rightarrow B=n \times \frac{\mu_{0} i}{2 \pi} \frac{\cos \phi}{d}$. Using the available data $B=\frac{n \mu_{0} i}{2 \pi} \times \frac{\sin \frac{\pi}{n}}{\frac{a}{2} \cot \frac{\pi}{n}} \Rightarrow B=$ $\frac{n \mu_{0} i}{\pi \frac{2 \pi r}{n}} \sin \frac{\pi}{n} \tan \frac{\pi}{n} \Rightarrow B=\frac{\mu_{0} i^{2}}{2 \pi^{2} r} \sin \frac{\pi}{n} \tan \frac{\pi}{n}$ is the answer of part (a).
Further, when geometry of wire is circular as $n \rightarrow \infty \Rightarrow \frac{\pi}{n} \rightarrow 0$, then $\sin \frac{\pi}{n} \rightarrow \frac{\pi}{n}$ and $\tan \frac{\pi}{n} \rightarrow \frac{\pi}{n}$. Accordingly, $B=$ $\frac{\mu_{0} i n^{2}}{2 \pi^{2} r} \times \frac{\pi}{n} \times \frac{\pi}{n}$. It simplifies to $B=\frac{\mu_{0} i}{2 r}$ is answer of part (b).
Thus, answers are (a) $\frac{\mu_{0} i n^{2}}{2 \pi^{2} r} \sin \frac{\pi}{n} \tan \frac{\pi}{n}$ and (b) $\frac{\mu_{0} i}{2 r}$.

Appendix-I

Magnetic Field due to a Long Current Carrying Wire at a Point P (Application of Biot-Savart's Law)

Given system is shown in the figure in $\hat{\imath}-\hat{\jmath}$ plane, where a wire AB of length l laid along $\hat{\jmath}$ is carrying a current I from B towards A. It is required to find magnetic field at a point P at a distance d from midpoint O of the wire.

Consider a small element of wire of length $\Delta y \rightarrow 0$ at a distance $-y$ from its midpoint. As per Biot-Savart's Law magnetic field at point P due to current I in the element of wire $d \vec{B}=\frac{\mu_{0} I}{4 \pi}\left(\frac{d \vec{y} \times \hat{r}}{r^{2}}\right)$.It leads to $d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{1}{r^{2}} \sin \theta d y \hat{k} \Rightarrow d B=\frac{\mu_{0} I}{4 \pi} \frac{\sin \theta}{r^{2}} d y$, in direction entering the plane of the figure as shown therein.
Therefore, magnitude of magnetic field at B due to wire AB is $B=\frac{\mu_{0} I}{4 \pi} \int_{-\frac{l}{2}}^{\frac{l}{2}} \frac{\sin \theta}{d^{2}+y^{2}} d y$.

Trigonometrically, $y=d \cot \theta \Rightarrow d y=-d \csc ^{2} \theta d \theta$. Likewise, limits would change to $-\frac{l}{2} \rightarrow \theta$ and $\frac{l}{2} \rightarrow$ $(\pi-\theta)$. Using this substitution $B=\frac{\mu_{0} I}{4 \pi} \int_{\theta}^{\pi-\theta} \frac{\sin \theta}{d^{2}\left(1+\cot ^{2} \theta\right)}\left(-d \csc ^{2} \theta d \theta\right)$. Again using trigonometry $\left(1+\cot ^{2} \theta=\csc ^{2} \theta\right)$, we have $B=\frac{\mu_{0} I}{4 \pi}\left[\int \frac{\sin \theta}{d^{2}\left(\csc ^{2} \theta\right)}\left(-d \csc ^{2} \theta d \theta\right)\right]_{\theta}^{\pi-\theta}$. This expression solves into $B=$ $\frac{\mu_{0} I}{4 \pi d}\left[\int \sin \theta d \theta\right]_{\theta}^{\pi-\theta} \Rightarrow B=-\frac{\mu_{0} I}{4 \pi d}[\cos \theta]_{\theta}^{\pi-\theta} \Rightarrow B=\frac{\mu_{0} I}{4 \pi d}[\cos \theta-\cos (\pi-\theta)] \Rightarrow B=\frac{\mu_{0} I}{2 \pi d} \cos \theta \ldots$ (I) Here, $\cos \theta=\frac{\frac{l}{2}}{r} \Rightarrow \cos \theta=\frac{\frac{l}{2}}{\sqrt{d^{2}+\left(\frac{l}{2}\right)^{2}}} \Rightarrow \cos \theta=\frac{l}{\sqrt{4 d^{2}+l^{2}}}$.

The generic expression of magnetic field (I), can be resolved in two specific cases as under -
Case 1: When $d \gg l$. From the figure $\cos \theta \rightarrow \frac{l}{2 d}$, accordingly $B=\frac{\mu_{0} I}{2 \pi d} \times \frac{l}{2 d} \Rightarrow B=\frac{\mu_{0} I l}{4 \pi d^{2}} \Rightarrow \boldsymbol{B} \propto \frac{\mathbf{1}}{\boldsymbol{d}^{2}}$ proved.
Case 2: When $d \ll l$. From the figure $\cos \theta \rightarrow 1$, accordingly $B=\frac{\mu_{0} I}{2 \pi d} \Rightarrow B \propto \frac{1}{d}$ proved.

-00-

Important Note: You may encounter need of clarification on contents and analysis or an inadvertent typographical error. We would gratefully welcome your prompt feedback on mail ID: subhashjoshi2107@gmail.com. If not inconvenient, please identify yourself to help us reciprocate to you suitably.

- 00 -

