
Magnetic Field at Any Point Inside a Circular Loop Carrying Current 

Synopsis 

This paper is an outcome of discussions with students of class 9th to 12th on electromagnetism during which it was 

observed that all texts and references cover derivation of magnetic field at the center of a current carrying circular 

loop and at any point on axis of the loop, perpendicular to the plane of the loop. An obvious question cropped up 

‘what could be magnetic field at any point inside the loop lying in its plane?’ Interactive Online Mentoring Sessions 

(IOMS), flagship of Gyan Vigyan Sarita, which focuses on grooming competence to compete among unprivileged 

children with a sense of Personal Social Responsibility (PSR) in a non-organizational, non-remunerative, non-

commercial and non-political manner. As a mentor of the initiative where students are prompted to come out of 

rote-learning and explore mathematics and science with an out-of-box perspective in their day-today experiences, 

the obvious question could not be averted. Accordingly, an illustration of the solution to the question has been 

evolved within the scope of understanding of target students. 

Problem Formulation: Consider a point P inside a circular loop of radius 𝑅 in 𝑗̂ − 𝑘̂ plane carrying a current 𝐼. The point 

P is at a distance 𝑎 from the center of the loop. It is required to determine magnetic field 𝐵 at P, as shown in the figure. 

As per Biot-Savart’s Law magnetic field at a point P at a distance 𝑟 = 𝑟𝑟̂ from a 

small length of loop ∆𝑙 carrying current 𝐼 is ∆𝐵⃗⃗ = (
𝜇0𝐼

4𝜋
)

∆𝑙×𝑟̂

𝑟2 ….(1). In the system 

small length  of wire is RS such that ∆𝑙 = (𝑅∆𝜃)𝑙 and point is P at which 

magnetic flux density is to be determined is displaced by 𝑟. As ∆𝜃 → 0 the 

element ∆𝑙 becomes tangential to radial OA and hence (1) can be written as ∆𝐵⃗⃗ =

((
𝜇0𝐼𝑅

4𝜋
)

sin(
𝜋

2
+𝛼)

𝑟2 ∆𝜃) 𝑖̂ ⇒  ∆𝐵⃗⃗ = ((
𝜇0𝐼𝑅

4𝜋
)

cos𝛼

𝑟2 ∆𝜃) 𝑖̂…(2). 

Problem Resolution: It is seen that (2) has three variables such that 𝐵 =

𝑓(𝑟, 𝛼, 𝜃) and 𝐵 at P can be obtained by integrating (2) w.r.t. 𝜃 in the interval 

[0,2𝜋] to arrive at net magnetic field at the point due to the loop. Therefore, integrand in (2) has to be formulated as a 

function only of 𝜃, by eliminating 𝑟 and 𝛼, with the related parameters  𝑅 and 𝑎 which are geometrical constants.  

Using properties of triangle in ∆ORP, 
𝑂𝑃

sin𝛼
=

𝑅𝑃

sin𝜃
=

𝑂𝑅

sin𝛽
⇒

𝑎

sin𝛼
=

𝑟

sin𝜃
=

𝑅

sin(𝜋−(𝛼+𝜃))
⇒

𝑎

sin𝛼
=

𝑟

sin𝜃
=

𝑅

sin(𝛼+𝜃)
. 

Accordingly, 𝑟 = 𝑎
sin𝜃

sin𝛼
 …(3) and sin𝛼 =

𝑎

𝑅
sin(𝛼 + 𝜃)….(4). 

It, further, solves into 

sin𝛼 =
𝑎

𝑅
(sin 𝛼 cos 𝜃 + cos𝛼 sin𝜃) ⇒ (1 −

𝑎

𝑅
cos𝜃) sin𝛼 =

𝑎

𝑅
sin 𝜃 cos𝛼.  

Introducing a normalization parameter 𝑡 =
𝑎

𝑅
 which defines relative position of point P in the plane of loop w.r.t. its center 

O we have - 

⇒ (1 − 𝑡 cos 𝜃) sin 𝛼 = 𝑡 sin 𝜃 . cos 𝛼 ⇒ (1 − 𝑡 cos 𝜃) sin 𝛼 = 𝑡 sin 𝜃 √1 − sin2 𝛼 

(1 + 𝑡2 cos2 𝜃 − 2𝑡 cos𝜃) sin2 𝛼 = 𝑡2 sin2 𝜃 (1 − sin2 𝛼) 

⇒ (1 + 𝑡2(cos2 𝜃 + sin2 𝜃) − 2𝑡 cos 𝜃) sin2 𝛼 = 𝑡2 sin2 𝜃 

 

 

 

 

 

 

 

Fig. 1 



⇒ sin2 𝛼 =
𝑡2 sin2 𝜃

(1 + 𝑡2 − 2𝑡 cos 𝜃)
 

⇒ sin𝛼 =
𝑡 sin𝜃

√(1+𝑡2−2𝑡 cos𝜃)
 …(5) 

⇒ cos2 𝛼 = 1 − sin2 𝛼 = 1 −
𝑡2 sin2 𝜃

(1 + 𝑡2 − 2𝑡 cos𝜃)
=

(1 + 𝑡2 − 2𝑡 cos𝜃) − 𝑡2 sin2 𝜃

(1 + 𝑡2 − 2𝑡 cos𝜃)
 

⇒ cos2 𝛼 =
(1 + 𝑡2(1 − sin2 𝜃) − 2𝑡 cos𝜃)

(1 + 𝑡2 − 2𝑡 cos𝜃)
=

(1 + 𝑡2 cos2 𝜃 − 2𝑡 cos 𝜃)

(1 + 𝑡2 − 2𝑡 cos 𝜃)
=

(1 − 𝑡 cos 𝜃)2

(1 + 𝑡2 − 2𝑡 cos 𝜃)
 

⇒ cos𝛼 =
1−𝑡 cos𝜃

√(1+𝑡2−2𝑡 cos𝜃)
…(6) 

Combining (3) [𝑟 = 𝑎
sin𝜃

sin𝛼
] and (5) [sin𝛼 =

𝑡 sin𝜃

√(1+𝑡2−2𝑡 cos𝜃)
], we have – 

𝑟 = 𝑎
sin𝜃
𝑡 sin𝜃

√(1+𝑡2−2𝑡 cos𝜃)

⇒ 𝑟 = 𝑅√(1 + 𝑡2 − 2𝑡 cos 𝜃) ⇒ 𝑟2 = 𝑅2(1 + 𝑡2 − 2𝑡 cos 𝜃)…(7) 

Combining (2),(6) and (7) we get – 

∆𝐵𝑡 = ((
𝜇0𝐼𝑅

4𝜋
)

cos𝛼

𝑟2 ∆𝜃) = (
𝜇0𝐼𝑅

4𝜋
)

1−𝑡 cos𝜃

√(1+𝑡2−2𝑡 cos𝜃)

𝑅2(1+𝑡2−2𝑡 cos𝜃)
∆𝜃 ⇒ ∆𝐵𝑡 = (

𝜇0𝐼

4𝜋𝑅
)

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)
3
2

∆𝜃…(8) 

Therefore, net magnetic field at P is – 

𝐵𝑡 = ∫ (
𝜇0𝐼

4𝜋𝑅
)

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)
3
2

∆𝜃
2𝜋

0
⇒ 𝐵𝑡 = (

𝜇0𝐼

4𝜋𝑅
) ∫

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)
3
2

𝑑𝜃
2𝜋

0
. 

Taking the limits outside the integration, for convenience of substitution we get – 

𝐵𝑡 = (
𝜇0𝐼

4𝜋𝑅
) [∫

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)
3
2

𝑑𝜃]
0

2𝜋

 …(9) 

The integration in (9), 𝐹(𝑡) = [∫
(1−𝑡 cos𝜃)

(1+𝑡2−2𝑡 cos𝜃)
3
2

𝑑𝜃]
0

2𝜋

 …(10), at the center of the loop O where  𝑎 = 0 ⇒ 𝑡 =
𝑎

𝑅
= 0 it 

reduces to the expression in (10) reduces to 𝐹(0) = [∫𝑑𝜃]0
2𝜋 ⇒  𝐹(0) = 2𝜋 …(11). Thus, magnetic field at O, combining 

(9) and (11)  is 𝐵𝑂 = (
𝜇0𝐼

4𝜋𝑅
) 2𝜋 ⇒ 𝐵𝑂 =

𝜇0𝐼

2𝑅
…(12), is in conformity with the known value of 𝐵 at the center of a current 

carrying loop. 

Likewise, magnetic field at 𝑎 = 𝑅− ⇒ 𝑡 =
𝑅−ℎ

𝑅
|
ℎ→0

= 1 −
ℎ

𝑅
|
ℎ→0

, we have – 

𝐹(1) = [∫
(1 − cos 𝜃)

(1 + 1 − 2 cos 𝜃)
3
2

𝑑𝜃]

0

2𝜋

=
1

2√2
[∫

1

√1 − cos 𝜃
𝑑𝜃]

0

2𝜋

=
1

2√2
[
 
 
 

∫
1

√2 sin2 𝜃
2

𝑑𝜃

]
 
 
 

0

2𝜋

⇒ 𝐹(1) =
1

4
[∫

1

sin
𝜃
2

𝑑𝜃]

0

2𝜋

 

Taking 
𝜃

2
= 𝑢 ⇒ 𝑑𝜃 = 2𝑑𝑢 it leads to- 



𝐹(1) =
1

4
[∫ cosec 𝑢 (2𝑑𝑢)]0

2𝜋 =
1

2
[∫ cosec 𝑢 𝑑𝑢]0

2𝜋 = (−)
1

2
[cosec 𝑢 cot 𝑢]0

2𝜋…(13) 

Making reverse substitution (13) we have - 

𝐹(1) = (−)
1

2
[cosec

𝜃

2
cot

𝜃

2
]
0

2𝜋
=

1

2
[cosec0 cot 0 − cosec 𝜋 cot 𝜋] =

1

2
[(∞) × (∞) − (∞) × (∞)]…(14) 

Thus, from (14), 𝐹(1) is indeterminate. 

Therefore, instead of calculating of determining pattern of 𝐹(𝑡), relative flux density 𝐵𝑎 =
𝐵𝑡

𝐵0
 is, combining (9) and (12) 

is – 

𝐵𝑟𝑡 =

(
𝜇0𝐼

4𝜋𝑅
)[∫

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)

3
2

𝑑𝜃]

0

2𝜋

𝜇0𝐼

2𝑅

=
1

2𝜋
[∫

1−𝑡 cos𝜃

(1+𝑡2−2𝑡 cos𝜃)
3
2

𝑑𝜃]
0

2𝜋

…(15). 

Combining (10) and (15), it leads to 𝐵𝑟𝑡 =
1

2𝜋
× 𝐹(𝑡)…(16) 

The integration 𝐹(𝑡) in (10), a part of (16), is not solvable by normal methods and pattern of flux density distribution has 

been determined using Trapezoidal Rule numerical method, using MS-Excel, in an interval 𝑡 = [0,0.99). Results are plotted 

in Fig. 2 using MyCurveFit, Online Curve Fitting software (https://mycurvefit.com/). As 𝑎 → 𝑅 ⇒ 𝑡 → 1 the integration 

𝐹(1) tends to be indeterminate and hence not plotted. Thus distribution of magnetic field over the cross-section of the loop 

, which is denser near the perimeter of the loop and rarer at the center, in the form of circular contours of uniform magnetic 

fields, is shown in Fig. 3. 

 

 

 

 

 

 

 

Data Calculated Numerically:  Data used in Fig. 2, is as under - 

 

 

 

 

 

𝒕 =
𝒂

𝑹
 

𝑩𝒓𝒕 𝒕 =
𝒂

𝑹
 

𝑩𝒓𝒕 𝒕 =
𝒂

𝑹
 

𝑩𝒓𝒕 

0 1 0.4 1.141324 0.8 2.257082 

0.1 1.006735 0.5 1.245621 0.9 3.925924 

0.2 1.031171 0.6 1.410594 0.99 36.10549 

0.3 1.073742 0.7 1.692237 1 Indeterminate 

 

Variation of Flux Density with Normalization Parameter (t) 

Fig. 2 

 

Fig. 3 
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Conclusion: Non-uniform magnetic field in the cross-section of the loop will impact philosophy of design of transformer 

core which is currently using uniform magnetic material in transformer core. Thus, this paper opens an opportunity to 

review overall design of transformer specially those used in instrumentation and control where errors due to core losses 

and magnetizing current are significant at macro level. At micro level it calls for review of magnetic forces that would 

influence configuration of orbital motion of electrons in atoms. Thus, review of overall spectrum of physics. 
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