
Electromagnetism: Magnetic Effect of Electric Current (Part III-Set 3)  

Selected Questions with Illustrations 

Q-01 The torque on a current loop is zero if the angle between the positive normal and the magnetic field is either 𝛼 =
0 or 𝛼 = 1800. In which of the two orientations the equilibrium is stable? 

A-01 𝛼 = 0  

I-01 Despite net charge on a current carrying wire being zero, cloud of free electron in wire experience a unidirectional 

drift. This drift is responsible for current in the wire. When current carrying wire is placed in magnetic field, as 

per Bio-Savart’s Law it produces a magnetic field around it. Interaction of these two magnetic field produces 

reorientation of magnetic field causing a force F on conductor as per Lorentz’s Force Law expressed as 𝐹⃗ = 𝑞𝑣⃗ ×

𝐵⃗⃗ ⇒ 𝐹⃗ = 𝐼𝑙 × 𝐵⃗⃗ ⇒  𝐹⃗ = 𝐼𝑙𝐵 sin 𝛼 𝑛̂. Here, 𝐼 is the current through wire, 𝑙 is length of wire, 𝐵 is magnetic field 

in which wire is placed, and 𝛼 is the angle of magnetic field vector  𝐵⃗⃗ w.r.t. length vector 𝑙. The three parameters 

I, l, B are non- zero as per statement of problem. Therefore, if 𝛼 ≠ 0, i.e. wire is not parallel to magnetic field 

then it will experience force. 

Thus, in the given system for force to be zero there are two possibilities – 

(i) Angle 𝛼 = 0 ⇒ sin 𝛼 = 0 between area vector 𝐴 and magnetic field vector 

𝐵⃗⃗. This case is shown in figure where ‘a’ of the loop through which current 

is entering is below and ‘b’ of loop through which current is leaving is 

above. This is the natural position of least potential energy 𝑈𝑖 = 0 of the 

current carrying loop, a state of stable equilibrium. 

(ii) The angle  𝛼 = 𝜋 ⇒ sin 𝛼 = 0. his case is 

shown in figure where ‘a’ of the loop through which current is entering is above 

and ‘b’ of loop through which current is leaving is below. Position of current 

carrying loop in this case requires work to be done by external force to rotate coil 

for position in case (i). Thus potential energy of the current carrying loop in this 

case 𝑈𝑖 > 0. Hence, current carrying loop in this case despite forces on the loop 

being in equilibrium, the loop is in instable equilibrium. 

Thus, answer is 𝜶 = 𝟎 

N.B.: Area vector A⃗⃗⃗ is of magnitude equal to the area A under consideration and in a direction such that direction 

of perimeter is anti-clockwise direction. This is consistent with angles measured (+)ve in anticlockwise direction 

Q-02 Let 𝐸⃗⃗ and 𝐵⃗⃗  denote electric and magnetic fields in a frame S and 𝐸⃗⃗′ and 𝐵⃗⃗′ in another frame S’ moving w.r.t. S 

with a  velocity 𝑣⃗. Two of the following equations are wrong. Identify them 

(a) 𝐵𝑦
′ =  𝐵𝑦 +

𝑣𝐸𝑧

𝑐2       (b) 𝐵𝑦
′ =  𝐸𝑦 −

𝑣𝐵𝑧

𝑐2     (c) 𝐵𝑦
′ =  𝐵𝑦 + 𝑣𝐸𝑧   (d) 𝐵𝑦

′ =  𝐸𝑦 + 𝑣𝐵𝑧 

A-02 (b), (c) 



I-02 As per Electromagnetic Field Theory, magnetic field 𝐵⃗⃗ = 𝐵𝑏̂ and Electric field 𝐸⃗⃗ = 𝐸𝑒 produces  

electromagnetic wave 𝑐𝑣 which propagates with velocity 𝑐  in direction 𝑣 ⊥ 𝑒 && 𝑣 ⊥ 𝑏̂, while 𝑒 ⊥ 𝑏̂. 

Dimensionally, [𝐸] = MLT−3I−1 …(1), [𝐵] = MI−1T−2…(2) and [𝑣] = LT−1…(3). 

Each of the option is being analyzed dimensionally – 

Option (a): 𝐵𝑦
′ =  𝐵𝑦 +

𝑣𝐸𝑧

𝑐2 ⇒ [LHS] =  MI−1T−2 && [RHS] = MI−1T−2 +
(LT−1)×(MLT−3I−1)

(LT−1)2 . The RHS  leads 

to [RHS] = MI−1T−2 + MI−1T−2. Since both the addends on the RHS have same dimensions hence 

[RHS] = MI−1T−2. Dimensionally, [𝐿𝐻𝑆] = [𝑅𝐻𝑆], these are not wrong. Hence, as desired option 

(a) is incorrect. 

Option (b): 𝐵𝑦
′ =  𝐸𝑦 −

𝑣𝐵𝑧

𝑐2 ⇒ [LHS] =  MI−1T−2 && [RHS] = MLT−3I−1 +
(LT−1)×(MLT−3I−1)

(LT−1)2 . The RHS  leads 

to [RHS] = MLT−3I−1 + MI−1T−2. Both the addends on RHS have unequal dimensions and hence 

they can be added. This make statement at option (b) wrong. Hence as desired option (b) is correct. 

Option (c): 𝐵𝑦
′ =  𝐵𝑦 + 𝑣𝐸𝑧 ⇒ [LHS] =  MI−1T−2 && [RHS] = MI−1T−2 + (LT−1) × (MLT−3I−1). The RHS  

leads to [RHS] = MLT−3I−1 + ML2I−1T−4. Both the addends on RHS have unequal dimensions 

and hence they can be added. This make statement at option (b) wrong. Hence as desired option (b) 

is correct. 

Option (d): 𝐵𝑦
′ =  𝐸𝑦 + 𝑣𝐵𝑧 ⇒ [LHS] =  MI−1T−2 && [RHS] = MLT−3I−1 + (LT−1) ×  (MI−1T−2). The RHS  

leads to [RHS] = MLT−3I−1 + MLI−1T−3. Both the addends on the RHS have same dimensions 

hence [RHS] = MI−1T−2. Dimensionally, [𝐿𝐻𝑆] = [𝑅𝐻𝑆], these are not wrong. Hence, as desired 

option (a) is incorrect. 

Hence, answer is option (b) and (c) 

N.B.: This problem requires understanding of electromagnetic waves. Yet, despite 𝐸, 𝐵 and 𝑣 being discretely 

different physical quantities, correctness of relations between them has been solved dimensionally. 

Q-03 Let 𝐸⃗⃗ and 𝐵⃗⃗  denote electric and magnetic fields in a frame S and 𝐸⃗⃗′ and 𝐵⃗⃗′ in another frame S’ moving w.r.t. S 

with a  velocity 𝑣⃗. Two of the following equations are wrong. Identify them 

(a) 𝐵𝑦
′ =  𝐵𝑦 +

𝑣𝐸𝑧

𝑐2       (b) 𝐵𝑦
′ =  𝐸𝑦 −

𝑣𝐵𝑧

𝑐2     (c) 𝐵𝑦
′ =  𝐵𝑦 + 𝑣𝐸𝑧   (d) 𝐵𝑦

′ =  𝐸𝑦 + 𝑣𝐵𝑧 

A-03 (b), (c) 

I-03 As per Electromagnetic Field Theory, magnetic field 𝐵⃗⃗ = 𝐵𝑏̂ and Electric field 𝐸⃗⃗ = 𝐸𝑒 produces  

electromagnetic wave 𝑐𝑣 which propagates with velocity 𝑐  in direction 𝑣 ⊥ 𝑒 && 𝑣 ⊥ 𝑏̂, while 𝑒 ⊥ 𝑏̂. 

Dimensionally, [𝐸] = MLT−3I−1 …(1), [𝐵] = MI−1T−2…(2) and [𝑣] = LT−1…(3). 

Each of the option is being analyzed dimensionally – 

Option (a): 𝐵𝑦
′ =  𝐵𝑦 +

𝑣𝐸𝑧

𝑐2 ⇒ [LHS] =  MI−1T−2 && [RHS] = MI−1T−2 +
(LT−1)×(MLT−3I−1)

(LT−1)2 . The RHS  leads 

to [RHS] = MI−1T−2 + MI−1T−2. Since both the addends on the RHS have same dimensions hence 

[RHS] = MI−1T−2. Dimensionally, [𝐿𝐻𝑆] = [𝑅𝐻𝑆], these are not wrong. Hence, as desired option 

(a) is incorrect. 

Option (b): 𝐵𝑦
′ =  𝐸𝑦 −

𝑣𝐵𝑧

𝑐2 ⇒ [LHS] =  MI−1T−2 && [RHS] = MLT−3I−1 +
(LT−1)×(MLT−3I−1)

(LT−1)2 . The RHS  leads 

to [RHS] = MLT−3I−1 + MI−1T−2. Both the addends on RHS have unequal dimensions and hence 

they can be added. This make statement at option (b) wrong. Hence as desired option (b) is correct. 



Option (c): 𝐵𝑦
′ =  𝐵𝑦 + 𝑣𝐸𝑧 ⇒ [LHS] =  MI−1T−2 && [RHS] = MI−1T−2 + (LT−1) × (MLT−3I−1). The RHS  

leads to [RHS] = MLT−3I−1 + ML2I−1T−4. Both the addends on RHS have unequal dimensions 

and hence they can be added. This make statement at option (b) wrong. Hence as desired option (b) 

is correct. 

Option (d): 𝐵𝑦
′ =  𝐸𝑦 + 𝑣𝐵𝑧 ⇒ [LHS] =  MI−1T−2 && [RHS] = MLT−3I−1 + (LT−1) ×  (MI−1T−2). The RHS  

leads to [RHS] = MLT−3I−1 + MLI−1T−3. Both the addends on the RHS have same dimensions 

hence [RHS] = MI−1T−2. Dimensionally, [𝐿𝐻𝑆] = [𝑅𝐻𝑆], these are not wrong. Hence, as desired 

option (a) is incorrect. 

Hence, answer is option (b) and (c) 

N.B.: This problem requires understanding of electromagnetic waves. Yet, despite 𝐸, 𝐵 and 𝑣 being discretely 

different physical quantities, correctness of relations between them has been solved dimensionally. 

Q-04 A 10 g bullet having a charge 4.00mC is fired at a speed 270 m/s in a horizontal direction. A vertical magnetic 

field of 500 T exists in the space. Find the deflection of the bullet due to the magnetic field as it travels through 

100 m. Make appropriate approximations. 

A-04 3.7 × 10−6m 

I-04 Given that a bullet of mass 𝑚 = 0.01 kg carries a charge 𝑞 = 4.00 × 10−6 C is fired 

along horizontal direction with a speed 𝑣 = 270 m/s. There is a vertical magnetic field 

𝐵 = 500 × 10−6 T. For convenience initial position of the particle is taken at origin O 

and its motion along (𝑖̂ − 𝑗̂) velocity vector as 𝑣⃗ = 𝑣𝑗…̂(1) as shown in the figure. 

Accordingly, 𝐵⃗⃗ = 𝐵𝑘̂…(2). 

As per Lorentz’s Force Law 𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗…(3). Combining (1), (2) and (3), 𝐹⃗ =

𝑞(𝑣𝑗̂ × 𝐵𝑘̂) ⇒ 𝐹⃗ = 𝑞𝑣𝐵(𝑗̂ × 𝑘̂) ⇒ 𝐹⃗ = 𝑞𝑣𝐵𝑖…̂(4), is arrived at using principle of 

cross-product of vectors. Therefore, acceleration of the particle taking (4), as per mechanics, is 𝑎⃗ =
𝐹⃗

𝑚
⇒ 𝑎⃗ =

𝑞𝑣𝐵

𝑚
𝑖…̂(5). 

Using available data, 𝑎⃗ =
(4.00×10−6)(270)(500×10−6)

0.01
𝑖̂ ⇒ 𝑎⃗ = 5.4 × 10−5𝑖 ̂ m/s2…(6). Rest of the problem is 

simple application of concepts of projectile motion in this case. 

While particle is accelerated with magnetic force along 𝑖,̂ its travel of 𝑦 = 100 m along 𝑗̂ is un-accelerated. Hence, 

hence time 𝑡 taken in this travel, using available data, is 𝑡 =
𝑦

𝑣
⇒ 𝑡 =

100

270
⇒ 𝑡 =

10

27
 s…(7). 

Motion of the particle with acceleration 𝑎⃗ with initial velocity 𝑢 = 0 in time 𝑡 is deflection 𝑥 = 𝐵𝐶 = 𝑂𝐴  of the 

particle along  𝑖.̂ This can be determined with equation of motion, 𝑥 = 0 × 𝑡 +
𝑎𝑡2

2
…(8). Using available data in 

(8) we have 𝑥 =
(5.4×10−5)(

10

27
)

2

2
⇒ 𝑥 = 𝟑. 𝟕𝟎 × 𝟏𝟎−𝟔m is the answer. 

N.B.: This problem involves integration of concepts of mechanics with Lorentz’ Force Law. 

Q-05 When a proton is released from rest in a room, it starts with an initial acceleration 𝑎0 towards the west. When it 

is projected towards north with a speed 𝑣0 , it moves with an initial acceleration 3𝑎0 towards west. Find the 

electric field and maximum possible magnetic field in the room. 

A-05 𝑚𝑎0

𝑒
 towards west,  

2𝑚𝑎0

𝑒𝑣0
 downward 



I-05 Given that in a room there are electric and magnetic fields. Acceleration of proton 

in two different cases proton is given as shown in the figure. Reference unit 

direction vectors are also indicated in the figure to facilitate analysis.  

Motion of a proton of mass 𝑚 and charge 𝑒 can be analyzed in accordance with 

Lorentz’s Force Law 𝐹⃗ = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) ⇒ 𝑎⃗ =
𝑒

𝑚
𝐸⃗⃗ +

𝑒𝑣𝐵

𝑚
sin 𝜃  𝑛̂…(1). Here, 𝜃 

is the angle of magnetic field vector wire length  𝐵⃗⃗ w.r.t. velocity vector 𝑣⃗, while 

unit vector 𝑛̂ is perpendicular to the plane containing vectors 𝑣⃗ & 𝐵⃗⃗. 

Given are two cases as under - 

Case 1: When proton is released from the state of rest 𝑣 = 0, acceleration of the 

particle as per (1) would be 𝑎⃗1 = 
𝑒

𝑚
𝐸⃗⃗…(2). It is given that  acceleration 

is towards west, 𝑎⃗1 = 𝑎0(−𝑗̂)…(3). Combining (2) and (3) we get 
𝑒

𝑚
𝐸⃗⃗ = 𝑎0(−𝑗̂) ⇒ 𝐸⃗⃗ =

𝑎0𝑚

𝑒
(−𝑗̂)…(4). Using reference vectors electric field is of magnitude 

𝒂𝟎𝒎

𝒆
 

towards west. 

Case 2: When proton projected  towards north with a velocity 𝑣⃗ = 𝑣0(−𝑖̂), it experiences an acceleration 𝑎⃗2 =

3𝑎0(−𝑗̂)…(5). As per (1) together with (4) is 𝑎⃗2 =
𝑒

𝑚
(

𝑎0𝑚

𝑒
) (−𝑗̂) +

𝑒𝑣𝐵

𝑚
sin 𝜃 𝑛̂…(6).  Combining (5) 

and (6), (−)3𝑎0𝑗̂ = (−)𝑎0𝑗̂ +
𝑞𝑒𝐵

𝑚
sin 𝜃  𝑛̂ ⇒

𝑒𝑣0𝐵

𝑚
sin 𝜃  𝑛̂ = (−)2𝑎0𝑗.̂ It leads to 𝐵 𝑛̂ =

2𝑚𝑎0

𝑒𝑣 sin 𝜃
(−𝑗̂)…(7).  

Going back to discussions following (1) and that velocity 𝑣 is along (– 𝑖̂)the magnetic field 𝐵⃗⃗ would be 

on (𝑖̂ − 𝑘̂) plane. Accordingly, angle 𝜃  is of magnetic field with velocity in (𝑖̂ − 𝑘̂). The equation (8), 

where parameters 𝑚, 𝑒, 𝑎0 and , 𝑣0 are constant,  be written as 𝐵 = 𝐾
1

sin 𝜃
. Therefore, for maximum 𝐵, 

let us apply concept of maxima-minima 
𝑑𝐵

𝑑𝜃
= 0 ⇒

𝑑

𝑑𝜃
(

1

sin 𝜃
) = 0…(8) Now substitute 𝑢 = sin 𝜃 ⇒

𝑑𝑢

𝑑𝜃
=

𝑑

𝑑𝜃
sin 𝜃 ⇒

𝑑𝑢

𝑑𝜃
= cos 𝜃. Manipulating (8) 

𝑑

𝑑𝜃
(

1

𝑢
) =

𝑑

𝑑𝑢
(

1

𝑢
) ×

𝑑𝑢

𝑑𝜃
. It further leads to 

𝑑

𝑑𝜃
(

1

𝑢
) =

(−)
1

𝑢2 × cos 𝜃 ⇒
𝑑𝐵

𝑑𝜃
= (−)

cos 𝜃

sin2 𝜃
…(9). Further, 

cot 𝜃

sin 𝜃
= 0 ⇒ cot 𝜃 = 0. It is a trigonometric equation 

and its principal solution for either maxima or minima is 𝜃 ±
𝜋

2
. It requires to choose among the two 

possible values of 𝜃 for maximum value of 𝐵. This is ascertained by taking second derivative of (8). If 
𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) > 0 the its solution among the two values will give minimum 𝐵, else if 

𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) < 0 then 

minima. 

Accordingly, 
𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) =  

𝑑

𝑑𝜃
(−

cot 𝜃

sin 𝜃
) ⇒

𝑑

𝑑𝜃
(−

cot 𝜃

sin 𝜃
) = (−)

sin 𝜃(
𝑑

𝑑𝜃
cot 𝜃)−cot 𝜃(

𝑑

𝑑𝜃
sin 𝜃)

sin2 𝜃
. It, further, 

solves into 
𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) = (−)

sin 𝜃×(−cosec2 𝜃)−cot 𝜃×sin 𝜃

sin2 𝜃
⇒

𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) =

cosec 𝜃+cot 𝜃×sin 𝜃

sin2 𝜃
…(10). 

This is where value of 
𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) in (10) needs to be examined for solution 𝜃 ±

𝜋

2
 of obtained from (9), 

Taking each of the values- 

(i) 𝜃 = (+)
𝜋

2
: Then, 

𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) =

1−0×1

1
⇒

𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) = 1 ⇒

𝑑

𝑑𝜃
(

𝑑𝐵

𝑑𝜃
) > 0 is condition of minima. 

(ii) 𝜽 = (−)
𝝅

𝟐
: Then, 

𝒅

𝒅𝜽
(

𝒅𝑩

𝒅𝜽
) =

−𝟏−𝟎×(−𝟏)

(−𝟏)𝟐 ⇒
𝒅

𝒅𝜽
(

𝒅𝑩

𝒅𝜽
) = −𝟏 ⇒

𝒅

𝒅𝜽
(

𝒅𝑩

𝒅𝜽
) < 𝟎 is condition of 

maxima, as desired 



As discussed following (1) above, 𝜃 is angular displacement of vector 𝐵⃗⃗ w.r.t. 𝑣⃗ and that the angle is 

(+)ve in anticlockwise direction, while it is (-)ve in clockwise direction. Thus, going back to the figure 

magnetic field 𝑩⃗⃗⃗ will be along (𝑘̂) i.e. downward . 

Thus, answers are 𝑬 =
𝒎𝒂𝟎

𝒆
 toward west and 𝑩 =

𝟐𝒎𝒂𝟎

𝒆𝒗𝟎
 downward. 

N.B.: This problem integrates concepts of electromagnetic force along with mathematics of vector algebra, 

trigonometric equations, maxima-minima, direction of angular displacement, It is a good example to appreciate 

beauty of mathematics in analysis of physical situations correctly, and in an unambiguous manner. Proficiency 

and confidence at it is acquired through understanding of concepts and its practice in problem solving. 

Q-06 A hypothetical magnetic field existing in a region is given by 𝐵⃗⃗ = 𝐵𝑒𝑟, where 𝑒𝑟 denotes unit vector along the 

radial direction. A circular loop of radius 𝑎, carrying a current 𝑖, is placed with its plane parallel to the X-Y plane 

and the center at (0,0, 𝑑). Find the magnitude of the magnetic force acting on the loop. 

A-06 2𝜋𝛼2𝑖𝐵

√𝑎2+𝑑2
 downward 

I-06 Given is a circular loop placed parallel to X-Y plane with it center C(0,0. 𝑑), it 

implies OC = 𝑑…(1) and a hypothetical magnetic field at every point on the 

perimeter of the loop  𝐵⃗⃗ = 𝐵0𝑒𝑟…(2), here unit vector is along  the line joining 

origin O and point  of consideration on the perimeter of the loop; in case of 

point P it is 𝑒𝑟||OP. Correspondence of X,Y,Z axes with unit vectors 𝑖,̂ 𝑗̂, 𝑘̂ is 

shown in the figure. 

It is seen that angle 𝛼 is between vectors 𝑘̂ & 𝑒̂𝑟 and is uniform at every point 

on the perimeter of the circular loop. 

Since loop is not a straight wire hence force on the loop can be determined by initially taking force experienced 

by an element length ∆𝑙 = ∆𝜃 × 𝑟 ⇒  ∆𝑙 = ∆𝜃 × 𝑟𝑟̂ ⇒  ∆𝑙 = 𝑟(∆𝜃 × 𝑟̂) ⇒  ∆𝑙 = 𝑟(∆𝜃𝑘̂ × 𝑟̂)…(3). here 𝑟 =

OP  and 𝜃 is along 𝑘̂.  

Accordingly, ∆𝑙 = 𝑟∆𝜃(𝑘̂ × 𝑟̂) ⇒  ∆𝑙 = ∆𝑙(𝑘̂ × 𝑟̂)…(4).  

In the given geometry, 𝐵⃗⃗ = 𝐵 sin 𝛼 𝑟̂ + 𝐵 cos 𝛼 𝑘̂…(5). 

Magnetic force as per Lorentz’s Force Law is ∆𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒ ∆𝐹⃗ = (𝑖∆𝑙) × 𝐵⃗⃗ ⇒ ∆𝐹⃗ = 𝑖(∆𝑙 × 𝐵⃗⃗)…(6). 

Here, geometrically  𝐵⃗⃗ = 𝐵 sin 𝛼 𝑟̂ + 𝐵 cos 𝛼 𝑘̂…(7) 

Combining (4), (5) and (6) we have  ∆𝐹⃗ = 𝑖 (∆𝑙(𝑘̂ × 𝑟̂) × (𝐵 sin 𝛼 𝑟̂ + 𝐵 cos 𝛼 𝑘̂))…(8) 

Eqn. (8) leads to ∆𝐹⃗ = ∆𝑙𝑖𝐵 (sin 𝛼 (𝑘̂ × 𝑟̂ × 𝑟̂) + cos 𝛼 (𝑘̂ × 𝑟̂ × 𝑘̂)),,,(9). This turns out to be problem of triple 

cross product of vectors. Instead considering symmetry of the geometry, as shown in figure, let us simplify using 

(3)  at P  ∆𝑙 = 𝑎∆𝜃(−𝑖)̂ and 𝑟̂ = 𝑗̂. With this, combining (6) and (7), we have – 

∆𝐹⃗ = 𝑖(𝑎∆𝜃(−𝑖)̂) × (𝐵 sin 𝛼 𝑗̂ + 𝐵 cos 𝛼 𝑘̂) ⇒ ∆𝐹⃗ = (−)𝑖𝑎𝐵∆𝜃 (sin 𝛼 (𝑖̂ × 𝑗̂) + cos 𝛼 (𝑖̂ × 𝑘̂)) 

∆𝐹⃗ = (−)𝑖𝑎𝐵∆𝜃(sin 𝛼 𝑘̂ + cos 𝛼 𝑗̂) ⇒ ∆𝐹⃗ = (𝑖𝑎𝐵 sin 𝛼 (−𝑘̂) + 𝑖𝑎𝐵 cos 𝛼 𝑗̂)∆𝜃 

∆𝐹⃗ = ∆𝐹𝑎(−𝑘̂) + ∆𝐹𝑟(−𝑟̂), here ∆𝐹𝑎 = 𝑖𝑎𝐵 sin 𝛼 ∆𝜃 and ∆𝐹𝑟 = 𝑖𝑎𝐵 cos 𝛼 ∆𝜃…(9) 

An observation of the symmetrical geometry t is to be noted ∆𝐹𝑟 component acting along 𝑗̂ → 𝑟̂ would mutually 

cancel with geometrically opposite points leading to 𝐹𝑟 = ∮ ∆𝐹𝑟 = 0…(10).  



In respect of axial force ∆𝐹𝑎 is along (−𝑘̂) i.e. downward and net force over the circular loop would be 𝐹𝑎 =

∮  ∆𝐹𝑎 ⇒ 𝐹𝑎 = 𝑖𝑎𝐵 sin 𝛼 ∮ ∆𝜃 ⇒ 𝐹𝑎 = 2𝜋𝑖𝑎𝐵 sin 𝛼…(11). Going back to the geometry  sin 𝛼 =
𝑎

√𝑎2+𝑑2
 …(12). 

Combining (11) and (12), together with the direction discussed above,  net force on the circular loop is 𝐹 = 𝐹𝑎 =

2𝜋𝑖𝑎𝐵 ×
𝑎

√𝑎2+𝑑2
⇒ 𝑭 =

𝟐𝝅𝒊𝒂𝟐𝑩

√𝒂𝟐+𝒅𝟐
 downward is the answer. 

N.B.: Though this problem is for a hypothetical magnetic field, yet it is a gives good practice to gain proficiency 

in handling three dimensional vectors. Further, mathematics is an effective analytical tool problem can and should 

be simplified using symmetries wherever possible. 

Q-07 A rigid wire consists of a semicircular portion of radius 𝑅 and two straight sections as shown 

in the figure. The wire is partially immersed in a perpendicular magnetic field 𝐵 as shown in 

the figure. Find the magnetic force on the wire if it carries a current 𝐼. 

A-07 2𝐼𝑅𝐵, upward in the figure 

I-07 Given system is shown in the figure. A rigid wires is shaped such that it has two 

straight and parallel portions of equal  lengths cb and cd 𝑙𝑎𝑏 = 𝑙(−𝑖)…(1), and 

𝑙𝑐𝑑 = 𝑙𝑖…(2) respectively. The length vectors, though parallel are taken in direction 

of currents and unit-direction vectors, as shown in the figure. These two portions 

are connected through a portion bc  in semicircular shape of radius 𝑅. Vectorially, 

a small length of the arc ∆𝑙𝑏𝑐 = 𝑅𝑟̂ × ∆𝜃(−𝑘̂)…(3); here 𝑟̂ unit-direction vector of 

the element ∆𝑙𝑏𝑐and unit-direction vector of ∆𝜃 is taken along (−𝑘̂) since current 

in the semicircular portion is in clockwise direction. 

The wire is taken to be on (𝑖̂ − 𝑗̂) plane while magnetic field, as shown in the figure, 

is 𝐵⃗⃗ = 𝐵𝑘̂…(4).  

Magnetic force experience by a conductor as per Lorentz’s Force Law is ∆𝐹⃗ = (𝑞𝑣⃗) × 𝐵⃗⃗ ⇒  𝐹⃗ = (𝑖∆𝑙⃗⃗⃗⃗ ) × 𝐵⃗⃗ ⇒

 ∆𝐹⃗ = 𝑖(∆𝑙 × 𝐵𝑘̂) ⇒  ∆𝐹⃗ = 𝑖𝐵(𝑙 × 𝑘̂)…(5). 

Combining above equations it leads to – 

𝐹⃗ = 𝐹⃗𝑎𝑏 + 𝐹⃗𝑏𝑐 + 𝐹⃗𝑐𝑎 

𝐹⃗ = 𝐼𝐵 (𝑙(−𝑖) × 𝐵𝑘̂ + ∫ (𝑅𝑟̂ × 𝑑𝜃(−𝑘̂)) × 𝑘̂
0

𝜋

+ 𝑙(𝑖) × 𝑘̂) 

𝐹⃗ = (−)𝐼𝑅𝐵 (∫ (𝑙𝑑𝜃) × 𝑘̂
0

𝜋
) ⇒ 𝐹⃗ = (−)𝐼𝑅𝐵 (∫ (𝑙𝑑𝜃) × 𝑘̂

0

𝜋
); here unit vector  𝑙 =

cos(900 − 𝜃) 𝑗̂ − sin(900 − 𝜃) 𝑖.̂ 

Thus, 𝐹⃗ = (−)𝐼𝑅𝐵 (∫ ((sin 𝜃 𝑗̂ − cos 𝜃 𝑖)̂𝑑𝜃) × 𝑘̂
0

𝜋
). It leads to - 

 𝐹⃗ = (−)𝐼𝑅𝐵 (∫ (((𝑗̂ × 𝑘̂) sin 𝜃 − (𝑖̂ × 𝑘̂) cos 𝜃) 𝑑𝜃)
0

𝜋

) ⇒ 𝐹⃗ = (−)𝐼𝑅𝐵 (∫ ((𝑖̂ sin 𝜃 + 𝑗̂ cos 𝜃 𝑖̂)𝑑𝜃)
0

𝜋

) 

𝐹⃗ = (−)𝐼𝑅𝐵([𝑖̂sin 𝜃 − 𝑗̂ cos 𝜃]𝜋
0 )𝑖̂ ⇒ 𝐹⃗ = 𝐼𝑅𝑅[cos 0 − cos 𝜋]𝑖̂ ⇒ 𝐹⃗ = 2𝐼𝑅𝐵𝑖̂, Thus, force is  𝟐𝑰𝑹𝑩 downward 

is the answer. 

N.B.: It is an example of proficiency in analysis using mathematics as an unambiguous tool of clarity. 



Q-08 Figure shows that a rod PQ of length 20.0 cm and mass 200 g suspended 

through a fixed point O by two threads of length of length 20.0 cm each. 

A magnetic field of strength 0.500 T exists in the vicinity of the wire PQ 

as shown in the figure. The wires connecting PQ with the battery are loose 

and exert no force on PW. 

(a) Find the tension in the threads when switch S is open. 

(b) A current of 2.0 A is established when the switch S is closed. Find 

the tension in the threads now. 

A-08 (a) 1.2 N    (b) 1.3 N 

I-08 Given system is shown in the figure and with given data ∆OPQ is 

equilateral of side 𝑙 = 0.20 m. For convenience 3D unit vectors are 

shown in the figure. Hence,2𝑇 sin
𝜋

3
= 𝐹 ⇒ 2𝑇 (

√3

2
) = 𝐹 ⇒ 𝑇 =

𝐹

√3
.  

Given that mass of wire 𝑚 = 0.200 kg and 𝐵⃗⃗ = 0.500𝑖̂ T, and 

acceleration due to gravity is not specified it’s magnitude is taken as 

𝑔 = 10 m/s2. It leads to  𝑔⃗ = 10(−𝑘̂) ms2. Both the parts are solved 

below – 

Part (a): When switch is open 𝐹⃗ = 𝐹⃗𝑔 = 𝑚𝑔⃗; using given data 𝐹⃗ =

0.200 × 10(𝑖)̂ ⇒ 𝐹 = 2.00 N⇒ 𝑇 =
2.00

√3
⇒ 𝑇 = 1.15 N or 𝑇 = 1.2 N 

Part (b): When switch is closed net force on wire would be 𝐹⃗ = 𝐹⃗𝑔 + 𝐹⃗𝑚. Here, 𝐹⃗𝑚 = (𝑖𝑙) × 𝐵⃗⃗ ⇒  𝐹⃗𝑚 =

𝑖(𝑙𝑗̂ × 𝐵𝑘̂) ⇒ 𝐹⃗𝑚 = 𝑖𝑙𝐵𝑖̂. Thus, using available data  𝐹⃗ = 2.00𝑖̂ + 2.0 × 0.20 × 0.500𝑖̂ ⇒ 𝐹⃗ = 2.2𝑖 ̂

N. Hence, tension in the strings would be 𝑇 =
2.2

√3
⇒ 𝑇 = 1.3 N. 

Hence, answers are (a) 𝟏. 𝟐 N and (b) 𝟏. 𝟑 N. 

N.B.: Reporting of answers is using principle of significant digits. 

Q-09 Two metal strips, each of length 𝐿, are clamped parallel to each 

other on a horizontal floor with a separation 𝑏 between them. 

A wire of mass 𝑚 lies  on them perpendicularly as shown in 

the figure. A vertically upward magnetic field of strength 𝐵 

exists in the space. The metal strips are smooth but coefficient 

of friction between the wire and the floor is 𝜇. A current 𝑖 is 

established when switch S is closed at the instant 𝑡 = 0. 

Discuss the motion of wire after switch is closed. How far away from the strp will the wire reach? 

A-09 𝑖𝑙𝑏𝐵

𝜇𝑚𝑔
  

I-09 For convenience of analysis unit vectors in 3D asre 

shown in the figure. Given system is placed in 

(𝑖̂ − 𝑗̂) plane and magnetic field is 𝐵⃗⃗ = 𝐵𝑘̂…(1). At 

𝑡 = 0, switch S is closed wire PQ is at ends AB of the 

two strips AC||BD clamped at a searation 𝑙 = 𝑏(−𝑖)̂. 

It will establish a current 𝑖  in the circuit as shown in 

the figure. This current flows in portion BA of the 

wires  from B to A whose length is 𝑙 = 𝑏…(2), i.e. separation between the two strips ACand BD, each of length 

𝐿 that are clamped. The strips AC and BD are firction less, but while after traversing the length  



As per Lorentz’s Force Law current through wire length 𝑙 will produce a amgnetic force 𝐹⃗ = 𝑖𝑙 × 𝐵⃗⃗. Using the 

avaliable data 𝐹⃗ = 𝑖 (𝑏(−𝑖)̂ × (𝐵𝑘̂)) ⇒ 𝐹⃗ = 𝑖𝑏𝐵 ((−)𝑖̂ × 𝑘̂) ⇒ 𝐹⃗ = 𝑖𝑏𝐵𝑗…̂(3). Thus wire of mass 𝑚 would 

experience a force and acceleration 𝐹 = 𝑖𝑏𝐵 ⇒ 𝑎 =
𝐹

𝑚
⇒ 𝑎 =

𝑖𝑏𝐵

𝑚
…(4) along right side i,e, toward ends C-D.  

Strips are of hiher crossection and hence considered to be of negligible resistance. Therefore, while wire under 

amgnetic force would slip along the length 𝐿 of the strip there would be no change of current and consequently 

force 𝐹 and acceleration 𝑎  would remain constant. 

Thus velocity attained by the wire, starting from state of rest frpm position PQ with 𝑢 = 0, as it reaches position 

P’Q’ and touches the floor with a velocity 𝑣, as per 3rd equation of motion, 𝑣2 = 𝑢2 + 2𝑎𝑠…(5). It, wiith available 

data, leads to  𝑣2 = 0 + 2 (
𝑖𝑏𝐵

𝑚
) 𝐿 ⇒ 𝑣2 =

2𝑖𝑏𝐵𝐿

𝑚
…(6). 

As soon as wire touches ground having coefficient of friction 𝜇, it experiences a frictional force 𝑓 = −𝜇𝑚𝑔 …(7), 

here is acceleration due to gravity. Thus wire would experience a frictional𝑎𝑓 =
𝑓

𝑚
⇒ 𝑎𝑓 = (−)

𝜇𝑚𝑔

𝑚
. It leads to 

𝑎𝑓 = (−)𝜇𝑔…(8). 

Again applying (5), in this case with 𝑢2 = 𝑣2 =
2𝑖𝑏𝐵𝐿

𝑚
,  𝑣2 = 0 and 𝑎𝑓 = (−)𝜇𝑔, distance 𝑠 = 𝑥 travelled by the 

wire, as shown in the figure, until it stops is 0 =
2𝑖𝑏𝐵𝐿

𝑚
+ 2((−)𝜇𝑔)𝑥 ⇒ 𝑥 =

2𝑖𝑏𝐵𝐿

𝑚

2𝜇𝑔
⇒ 𝒙 =

𝒊𝒃𝑩𝑳

𝝁𝒎𝒈
 is the answer. 

N.B.: This problems integrates electromagnetism with mechanics. 

Q-10 Figure shows a cirular wire-loop of a radius 𝑎, carrying a current 𝑖, placed in a 

parpendicular magnetic field 𝐵. 

(a) Consider a small part ∆𝑙 of the wire. Find the force on this paet of the wire exerted by 

the magnetic field. 

(b) Find the force of compression in the wire. 

A-10 (a) 𝑖∆𝑙𝐵 towards the center    (b) 𝑖𝑎𝐵  

I-10 As per Lorentz’s Force Law current through wire length 𝑙 will produce a amgnetic 

force 𝐹⃗ = 𝑖𝑙 × 𝐵⃗⃗. In this case a small length of the circular 

loop ∆𝑙 = ∆𝑙𝑡̂ and magnetic field 𝐵⃗⃗ = 𝐵(−𝑘̂). Accordingly,  

∆𝐹⃗ = 𝑖 ((∆𝑙𝑡̂) × 𝐵(−𝑘̂))…(1). Here, unit tangent vector for  

∆𝑙 is 𝑡̂  and is ┴ to 𝐵⃗⃗. Hence, asper Flemmings Left Hand 

Rule, as shown in the figure, is ∆𝐹⃗ = 𝑖∆𝑙𝐵(−𝑟̂)…(2). Since, 

𝑟̂ is unit vector along radius i.e. ouward and hence magnetic 

force along  (−𝑟̂) toward the center of the cirle. Thus, answer of part (a) wire is 𝒊∆𝒍𝑩 

towards the center. 

Part (b) requires to determine fore of compression on wire and is being analyzed with 

priniples of statics of forces. As determined in part (a) force on small part of the circualr 

wire which subtends an angle 𝜃 at its center O is ∆𝐹 = 𝑖∆𝑙𝐵 towards the center as per 

(2). This force is result of tensile tension 𝑇 experienced by the small part of the wire. 

Geometrically tension 𝑇 is at an angle (900 −
𝜃

2
) with the force ∆𝐹. Therefore, 

vectorially ∆𝐹 = 2𝑇 cos (900 −
𝜃

2
) ⇒ ∆𝐹 = 2𝑇 sin

𝜃

2
….(3) 



Since, ∆𝑙 ≪⇒ 𝜃 → 0 ⇒ sin 𝜃 → 𝜃. Therefore, sin
𝜃

2
→

𝜃

2
…(4). It leads to ∆𝐹 = 2𝑇

𝜃

2
⇒ ∆𝐹 = 𝑇𝜃…(5). 

Combining (2) and (5), 𝑖∆𝑙𝐵 = 𝑇𝜃. Since length of the small part is ∆𝑙 = 𝑎𝜃. It leads to 𝑇𝜃 = 𝑖(𝑎𝜃)𝐵. It leads 

to 𝑻 = 𝒊𝒂𝑩 is answer of the part (b). 

N.B.: It is the application of principle of Hoop Stress, in mechanics, into electromagnetism. 

Q-11 A proton describes a circle of radius 1 cm in a magnetic field of strength 0.10 T. What would be the radius of the 

circle by an 𝛼-particle moving with the same speed in the same magnetic field? 

A-11 2 cm 

I-11 Given that radius of circle described by a proton in magnetic field 𝐵 = 0.10 T is 𝑟𝑝 = 1 cm, It is required to find 

radius 𝑟𝛼 of an 𝛼-particle moving with the same speed in the same magnetic field. 

This problem involves concept of magnetic force as per Lorentz’s Force Law, which is  𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹 =

𝑞𝑣𝐵 sin 𝜃 𝑛̂…(1) and mechanics of uniform cicular motion 𝐹 =
𝑚𝑣2

𝑟
…(2). For uniform cicular motion combining 

(1) and (2) 𝑞𝑣𝐵 sin 𝜃 =
𝑚𝑣2

𝑟
⇒

𝑣

𝐵 sin 𝜃
=

𝑞𝑟

𝑚
…(3). With identical 𝑣⃗ and 𝐵⃗⃗ for proton and 𝛼-particle L.H.S is same 

for both the paticles accordingly, 
𝑞𝑝𝑟𝑝

𝑚𝑝
=

𝑞𝛼𝑟𝛼

𝑚𝛼
⇒ 𝑟𝛼 = (

𝑞𝑝𝑚𝛼

𝑞𝛼𝑚𝑝
) 𝑟𝑝…(4) Given that 𝑟𝑝 = 1 cm , and we know that 

charge of proton 𝑞𝑝 = 𝑒 and 𝑞𝛼 = 2𝑒, while taking mass of proton 𝑚𝑝 = 𝑚, mass of alpha particle is 𝑚𝛼 = 4𝑚. 

Accordingly, 𝑟𝛼 = 1 ×
𝑒×4𝑚

2𝑒×𝑚
⇒ 𝑟𝛼 = 𝟐cm is the answer. 

N.B.: In the problem value of 𝐵 is notional and is not rrequired in arriving at results. Secondly, though radius of 

proton is given in CGS unit, deliberately it has not been converted in SI, because what is required to be detrmined 

is another radius. Thirdly, all quantities of coefficient in (4) are ratios of identical quantities of the two particles. 

Thus, this problem gets automatically simplified, without involving apparent calculations.  

Q-12 Protons having kinetic energy 𝐾 emerges from an accelerator as a narrow beam. The beam is bent by a 

perpendicular magnetic field so that it just misses a plane target kept at a distance 𝑙 in front of the accelerator. 

Find the magnetic field. 

A-12 √8𝑚𝐾

𝑒𝑙
 where 𝑚 is mass of proton, 

I-12 For convenience of analysis, unit vectors in 3D are shown in the figure. Protons 

having charge 𝑞 = 𝑒  come out of an accelerator rom A with kinetc energy 𝐾 =

1

2
𝑚𝑣2 ⇒ 𝑣 = √

2𝐾

𝑚
…(1). Here, 𝑚 is mass of proton and 𝑣⃗ = is the velocity. The 

proton beam bends while passing through magnetic field 𝐵⃗⃗ ⊥ 𝑣⃗.  

As per Lorentz’s Force Law, which is  𝐹⃗ = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝑞𝑣⃗ × 𝐵𝑘̂ ⇒ 𝐹⃗𝑚 =

𝑞𝑣𝐵 sin 𝜃 (−𝑟̂) .Here, angle of 𝐵⃗⃗ w.r.t. 𝑣⃗ is given to be 𝜃 =
𝜋

2
⇒ sin 𝜃 = 1 and 

unit radial vector 𝑟̂ as shown in the figure. Accordingly, 𝐹⃗𝑚 = 𝑞𝑣𝐵(−𝑟̂)…(2), 

centripetal force responsible for circular motion  of the proton. 

Magnetic force at A is in a direction perpendicular to the velocity of ejection by accelerator. It will not will change 

the speed and circular trajectory of protons is shown in the figure. 

The proton while describing circular it will experience it will experience centrifugal force 𝐹⃗C =
𝑚𝑣2

𝑟
𝑟̂…(3). . In 

state of uniform motion, i.e. equilibrium,  𝐹⃗𝑚 +  𝐹⃗C = 0 ⇒ 𝑞𝑣𝐵(−𝑟̂) +
𝑚𝑣2

𝑟
𝑟̂. It leas to 𝐵 =

𝑚𝑣2

𝑞𝑣𝑟
⇒ 𝐵 =

𝑚𝑣

𝑞𝑟
…(4).  



Using the available data, 𝐵 =
𝑚(√

2𝐾

𝑚
)

𝑒𝑟
⇒ 𝐵 =

√2𝑚𝐾

𝑒𝑟
…(5). 

It is given that magnitude of the magnetic field is such that it just misses a target placed at distance 𝑙 from the 

accelerator. From the the geometry of of the circular path of proton in magnetic field it isseen that 𝑟 =
𝑙

2
, 

accordingly (5) gets transformed to 𝐵 =
√2𝑚𝐾

𝑒
𝑙

2

⇒ 𝐵 =
2√2𝑚𝐾

𝑒𝑙
⇒ 𝐵 =

√𝟖𝒎𝑲

𝒆𝒍
 is the answer. 

N.B.: This problem needs careful analysis of motion of the charged particle. Accordingly, the target along the 

accelerator will always be missed. It must be along a line perpendicular to the initial velocity at A, the instant of 

ejection from the accelerator. Rest of the problem is application of electromagnetic forces and mechanics of 

circular motion. 

Q-13 A particle of mass 𝑚 and positive charge  𝑞  moving wth a uniform velocity 𝑣, enters a 

magnetic field 𝐵 as shown in the figure.  

(a) Find the radius of the circular arc it descrbes in the magnetic field. 

(b) Find the angle subtended by the arc at the center. 

(c) How long does the particle stay inside the magnetic field? 

(d) Solve the three parts of the above problem if charge 𝑞 on the particle is negative. 

A-13 (a) 
𝑚𝑣

𝑞𝐵
   (b) 𝜋 − 2𝜃   (c) 

𝑚

𝑞𝐵
(𝜋 − 2𝜃)   (d) 

𝑚𝑣

𝑞𝐵
, 𝜋 + 2𝜃,

𝑚

𝑞𝐵
(𝜋 + 2𝜃) 

I-13 This problem involves 3D vectors and hence unit vectors are shown in the figure. Given is a 

particle of mass mass 𝑚 and charge  𝑞 moving with a velocity 𝑣⃗ = 𝑣𝑣 enters a magnetic field  

𝐵⃗⃗ = 𝐵(−𝑘̂)  as shown in the figure. It is seen that velocity vector 𝑣⃗ ⊥ 𝐵⃗⃗. 

Therefore, magnetic force experienced by the particle 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗. It leads to 

𝐹⃗𝑚 = 𝑞𝑣𝐵(𝑛̂)….(1). Here, 𝑛̂ is perpendicular to both the vectors 𝑣⃗ and 𝐵⃗⃗. This 

is a condition of circular motion where 𝐹⃗𝑚 acts as centripetal force such that 𝑛̂ →
(−𝑟̂) …(2), and 𝑟̂ is the radius vector of the circular path. 

With this pre-analysis of the system, each part is being solved separately – 

Part (a): The particle during circular motion would experience a centrifugal force 𝐹⃗𝐶 =
𝑚𝑣2

𝑟
𝑟̂…(3). During the 

uniform circular motion forces are in equilibrium. Thus, combining (1), (2) and (3) it leads to  𝐹⃗𝑚 +

 𝐹⃗𝐶 = 0 ⇒ 𝑞𝑣𝐵(−𝑟̂) +
𝑚𝑣2

𝑟
𝑟̂ = 0 ⇒ 𝑞𝑣𝐵 =

𝑚𝑣2

𝑟
⇒ 𝒓 =

𝒎𝒗

𝒒𝑩
…(4), is answer of part (a) 

Part (b): Let A is the point at which charged particle is entering the magnetic field at an angle 

𝜃 and after taking a circular path  of radius 𝑟, having center at C, it exits the magnetic 

field at B, as shown in the figure ∠𝐴𝐶𝐵 = 𝛼 = (𝜋 − 2𝜃)…(5). Thus, geometrically 

the arc AB subtends an angle (𝝅 − 𝟐𝜽)) at its center C is the answer of part (b). 

Part (c): Time spend by the particle in the magnetic field which is performing uniform 

circular motion with speed 𝑣 is 𝑡 =
𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑐

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
…(6).  Length of the 

arc AB 𝑙𝐴𝐵 = 𝑟𝛼…(7). Thus combining (4)…(7) we have  𝑡 =
𝑟(𝜋−2𝜃)

𝑣
⇒ 𝑡 =

𝑚𝑣

𝑞𝐵
(𝜋−2𝜃)

𝑣
⇒ 𝑡 =

𝑚(𝜋−2𝜃)

𝑞𝐵
…(8).Thus, answer of part (c) is 

𝒎(𝝅−𝟐𝜽)

𝒒𝑩
 



 Part (d): In this case charge of the particle is (−𝑞). Therefore, analysis would be on 

the lines in part (a)..(c) except in all the equations. Therefore direction of 

magnetic force would reverse leading to the trajectory of the path of the 

particle as shown in the figure. 

Since, magnitude of the magnetic force and counterbalancing centrifugal force 

remain unchanged. Hence, radius of the path of uniform circular motion would 

remain same as 𝒓 =
𝒎𝒗

𝒒𝑩
. Further, parajectory of the particle is major arc of the 

circle and hence geometrically angle formed by the major arc at the centre C of the trajectory is 𝝅 +
𝟐𝜽. As regards speed of the particle as weel as radius of the circular path remain unchanged. Hence, 

time taken by the particle to come out of the magnetic field is  
𝒎(𝝅+𝟐𝜽)

𝒒𝑩
.  

Thus, answer of the part (d) is 
𝒎𝒗

𝒒𝑩
, 𝝅 + 𝟐𝜽, 

𝒎(𝝅+𝟐𝜽)

𝒒𝑩
 

Thus, answers are (a) 
𝒎𝒗

𝒒𝑩
   (b) 𝝅 − 𝟐𝜽   (c) 

𝒎

𝒒𝑩
(𝝅 − 𝟐𝜽)   (d) 

𝒎𝒗

𝒒𝑩
, 𝝅 + 𝟐𝜽,

𝒎

𝒒𝑩
(𝝅 + 𝟐𝜽). 

N.B.: (1) In such in part (d) analytical equations remain same as in part (a)…(c), except for the change in charge 

from 𝑞 → (−𝑞). Accordingly there is change in trajectory of the charged particle. Thus affecting change in 

geometry, wherever necessary, symmetry of equations can be utilized to abridge the answer, unless Part (d) 

is an independent question. 

(2) This problem involves uniform speed of particle along a circular trajectory. Hence, 𝑡 =
𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑐

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
 is 

correct. However, solving it as, on the lines of projectile motion 𝑡 =
𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐴𝐵

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑙𝑜𝑛𝑔 𝐴𝐵 
 

would be incorrect. 

Q-14 A narrow beam of singly-charged carbon ions, moving with a constant velocity of 6.0 ×
104 m/s, is sent perpndicularly in a rectangular region having a uniform magnetic field 

𝐵 = 0.5 T as shown in the figure. It is found that two beams emerge from the field in the 

backward direction., the separation from the incident beam being 3.0 cm and 3.5 cm. 

Identify the carbon isotopes present in the ion beam. Take the mass of the ions =
𝐴(1.6 × 10−27) kg where 𝐴 is the mass number. 

A-14 12C and 14C 

I-14 This problem involves 3D vectors and hence unit vectors are shown in the figure. Given is a 

particle of mass mass 𝑚 and charge  𝑞 moving with a velocity 𝑣⃗ = 𝑣(−𝑗̂) = 6.0 × 104(−𝑗̂) 

enters a magnetic field  𝐵⃗⃗ = 𝐵(−𝑘̂) = 0.5(−𝑘̂)T  as shown in the figure. It is seen that velocity 

vector 𝑣⃗ ⊥ 𝐵⃗⃗. Therefore, magnetic force experienced by the particle, as per Lorentz’s Force Law, 

𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑞(6.0 × 104(−𝑗̂)) × (0.5(−𝑘̂)) ⇒ 𝐹⃗𝑚 = 𝑞(3.0 × 104)𝑛̂…(1).  

It is case of circular motion where 𝑛̂ is perpendicular to both vectors 𝑣⃗ and 𝐵⃗⃗ and 𝑛̂ =
(−𝑟̂)…(2) Moreover, ions are singly charged, yet initial direction of deflection as 

given is along (−𝑖)̂ and hence charge on ions must be negative. It leads to 𝐹⃗𝑚 =
𝑞𝑣𝐵(−𝑟̂)….(3).  

The particle during circular motion would experience a centrifugal force 𝐹⃗𝐶 =
𝑚𝑣2

𝑟
𝑟̂…(4). During the uniform circular motion forces are in equilibrium. Thus, 

combining (1), (2) and (3) it leads to  𝐹⃗𝑚 + 𝐹⃗𝐶 = 0 ⇒ 𝑞𝑣𝐵(−𝑟̂) +
𝑚𝑣2

𝑟
𝑟̂ = 0 ⇒ 𝑞𝑣𝐵 =

𝑚𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑣

𝑞𝐵
…(5), is 

radius of the circular trajectory of the ions. 



We are given two isotopes whose masses are 𝑚1 and 𝑚2 and, therefore, ratio of their radii is 
𝑟1

𝑟2
=

𝑚1𝑣

𝑞𝐵
𝑚2𝑣

𝑞𝐵

. It leads 

to 
𝑟1

𝑟2
=

𝑚1

𝑚2
…(6). It is given that ions emerge out of the magnetic field in backward direction and hence seperation 

of incident and emergent ions is diameter of the circular trajectory of the ions where 𝑑 = 2𝑟 and likewise atomic 

mass is 𝑚 = 𝐴(1.6 × 10−27), here 𝐴 is atomic number of the atom. Accordingly, (6) is transformed into 
𝑑1

𝑑2
=

𝑚1

𝑚2
⇒

2×𝑟1

2×𝑟2
=

𝐴1×(1.6×10−27)

𝐴2×(1.6×10−27)
⇒

𝑑1

𝑑2
=

𝑍1

𝑍2
…(7). 

Usimg the given data in (7),  
3

3.5
=

𝑚1

𝑚2
⇒

6

7
=

𝑚1

𝑚2
…(8). Considering the atomic structure ions having mass 𝑚1is 

C12  and the other ion is 𝑚1is C14  whose atomic numbers are 12 and 14 respectively. Thus, answer is 12C and 14C.  

N.B.: It is seen from the illustration that all the given data is notional and is not required when solving the problem 

algebriacally. It, however, requires understanding of atomic numbers for iosotopes. is seen from the illustration 

that all the given data is notional and is nome of it is required when solving the problem algebriacally. It is, 

therefore, advised that numerical solution should not be attempted unless it is essential. It saves time and brings 

in accuracy of results. It, however, requires understanding of atomic numbers for iosotopes. 

Q-15 A narrow beam of singly charged potassium ions of kinetic energy 32 keV is injected 

into a region of width 1.00 cm having a magnetic field 𝐵 = 0.500 T as shown in the 

figure. The ions re-collected at a screen 95,5 cm away from the field region. If the beam 

contains isotopes of atomic weights 39 and 41, find the separation between the points 

where these isotopes strike the screen. Take the mass of a potassium ion 𝑚 =
𝐴(1.6 × 10−27) kg where 𝐴 is the mass number. 

A-15 0.75mm 

I-15 This problem involves 3D vectors and hence unit vectors are shown in the figure.Given are single 

charged potessioum ions having kinetic energy 𝐾 = 32 × 103eV. For reference energy 1𝑒𝑉 =
1.6 × 10−19J, thus 𝐾 = (32 × 103)(1.6 × 10−19) J. Such ions are injected along (𝑗̂) into a 

magnetic field 𝐵 = 0.500(−𝑘̂) T …(1) of width 𝑑 = 1.00 × 10−2m. 

Let the ion acquires a velocity 𝑣⃗ = 𝑣𝑗 ̂  then 𝐾 =
1

2
𝑚𝑣2…(2). Here 𝑚 is the mass of the ion. 

Accordingly,  
1

2
𝑚𝑣2 = 𝐾 ⇒ 𝑣 = √

2𝐾

𝑚
…(2),. Hence, velocity vector  of the ion. Is 𝑣⃗ = 𝑣𝑗…̂(3). 

It is seen that velocity vector 𝑣⃗ ⊥ 𝐵⃗⃗. This ion in the  magnetic field would experience a force as per Lorentz’s 

Force Law, 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑒 (√
2𝐾

𝑚
𝑗̂) × 𝐵𝑘̂ ⇒ 𝐹⃗𝑚 = (𝑒𝐵√

2𝐾

𝑚
) 𝑖.̂ This is a case of circular motion of ion 

where 𝑣⃗ ⊥ 𝐹⃗𝑚, accordingly ceptripetal acceleration would acts along (−𝑟̂) = 𝑖 ̂ . This concludes to 𝐹⃗𝑚 =

(𝑒𝐵√
2𝐾

𝑚
) (−𝑟̂)…(4). 

While the ions describe circular motion wouldit  experience a centrifugal force 𝐹⃗𝐶 =
𝑚𝑣2

𝑟
𝑟̂…(5). We know that 

mass number of potassium is 𝐴, therefore, 𝑚 = 𝐴 × (1.6 × 10−27)kg. 



During the uniform circular motion the two forces 𝐹⃗𝑚 and 𝐹⃗𝐶 are in equilibrium. Thus, combining (4) and (5) it 

leads to  𝐹⃗𝑚 +  𝐹⃗𝐶 = 0 ⇒ (𝑒𝐵√
2𝐾

𝑚
) (−𝑟̂) +

𝑚𝑣2

𝑟
𝑟̂ = 0 ⇒ (𝑒𝐵√

2𝐾

𝑚
) =

𝑚(√
2𝐾

𝑚
)

2

𝑟
. It leads 

to ⇒ (𝑒𝐵√
2𝐾

𝑚
) =

2𝐾

𝑟
⇒  𝑟 =

√2𝐾×𝑚

𝑒𝐵
…(6).  

Circular trajectory of the ion through narrow magnetic field is shown in the figure. Ion 

during motion inside magnetic field is deflected through an 

angle 𝜃, which trigonometrically is sin 𝜃 =
𝑑

𝑟
…(7), as shown in 

the figure. Taking 𝜃 ≪⇒ sin 𝜃 → 𝜃 ⇒ 𝜃 =
𝑑

𝑟
…(8) 

Outside the magnetic field it reaches the screen along BR as shown in the figure. 

Therefore, for ions of kotassium with 𝐴1 = 39  and 𝐴2 = 41, their striking points R on 

the screen at a distance 𝑤f  from the magnetic field would be, above point P,  at height  

ℎ = RP − QP ⇒
ℎ

𝑤
= tan 𝜃…(9). With the approximation at (8), we have tan 𝜃 → 𝜃 =

𝑑

𝑟
. Accordingly, 

ℎ

𝑤
=

𝑑

𝑟
⇒ ℎ =

𝑑×𝑤

𝑟
 …(11). This for the two ions is ℎ1 and ℎ2.  

Accordingly, seperation between the two ions striking on the screen is ∆ℎ = |ℎ1 − ℎ2|. It further solves into  

∆ℎ = |
𝑑×𝑤

𝑟1
−

𝑑×𝑤

𝑟2
| ⇒ ∆ℎ = (𝑑 × 𝑤) |

1

𝑟1
−

1

𝑟2
| …(12). 

Combining (6) and (12), ∆ℎ = (𝑑 × 𝑤) |
1

√2𝐾×(𝐴1×(1.6×10−27))

𝑒×𝐵

−
1

√2𝐾×(𝐴2×(1.6×10−27))

𝑒×𝐵

|. It further solves into ∆ℎ =

(𝑑×𝑤)×(𝑒×𝐵)

√2𝐾×(1.6×10−27)
|

1

√𝐴1
−

1

√𝐴2
|.  

Using the available data, ∆ℎ =
((1.00×10−2)×(95.5×10−2))×((1.6×10−19)×(0.500))

√2×((32×103)×(1.6×10−19))×(1.6×10−27)
|

1

√39
−

1

√41
| 

⇒ ∆ℎ = (1.89 × 10−1) × (3.954 × 10−3) ⇒ ∆𝒉 = 𝟎. 𝟕𝟓 mm is the answer. 

N.B. This illustration uses approximation in arriving at values of 𝜃 and ℎ, and has been accordingly brought out 

in it. 

Q-16 Electrons emitted with negligible speed from an electron gun are 

accelerated thriugh a potential difference 𝑉 along the X-axis. These 

electrons emerge from a narrow hole into a uniorm magnetic field 𝐵 

directed along this axis. However, some of the electrons emerging from 

the hole make slightly divergent angle as shown in the figure. Show that 

these paraxial electrons are refocussed on the X-axis at a distance √
8𝑚𝑉

𝑒𝐵2 . 

A-16 - 



I-16 Let, mass of electron is 𝑚, carries a charge 𝑞 = −𝑒 moves is emitted with a velocity 𝑢 ≪ and is accelerated by a 

electric potential difference  𝑉 along a seperation 𝑑 = 𝑑𝑖 ̂as shown 

in the figure. 

Kinetic energy gained by the electron during travel from P to Q 

would be 𝐾 = 𝑒𝑉 =
1

2
𝑚𝑣2. Hence, 𝑣 = √

2𝑒𝑉

𝑚
…(1).  

Further, there is magnetic field alongmagnetic field is 𝐵⃗⃗ = 𝐵𝑖 ̂…(2).     

These aligned electrons ion in the  magnetic field would experience a force as per Lorentz’s Force Law, 𝐹⃗𝑚 =

𝑞𝑣⃗ × 𝐵⃗⃗ ⇒ 𝐹⃗𝑚 = 𝑐𝑣𝐵 sin 𝜃 𝑛̂ ⇒ 𝐹⃗𝑚 = 𝑒(𝑣𝑣) × 𝐵𝑖̂ ⇒ 𝐹⃗𝑚 = 𝐹𝑚𝑛̂ ⇒ 𝐹𝑚 = 𝑒𝑣𝐵…(3).  

Non-divergent electrons would not experience magnetic force since both 𝑣 = 𝑖 ̂ and hence from (3) we have 𝐹⃗𝑚 =

𝑒(𝑣𝑖̂) × 𝐵𝑖̂ ⇒ 𝐹⃗𝑚 = 𝑒𝑣𝐵(𝑖̂ × 𝑖)̂ = 0, since 𝑖̂ × 𝑖̂ = 0. Accordingly, time taken by the electron along QR would 

be 𝑡 =
𝑑

𝑣
⇒ 𝑡 = √

𝑚𝑑2

2𝑒𝑉
…(4). 

But, electrons diverted by any angle say 𝜃 would experience, as per (3), magnetic 

force 𝐹⃗𝑚 = 𝑒𝑣𝐵 sin 𝜃 𝑛̂ … (4). along (𝑛̂) is perpendicular to both the  vectors 𝑣 and 𝑖 ̂and 

hence eventually 𝑣 ⊥ 𝑛̂ is a valid case of circular motion. Hence, divergent electron would 

experience a uniform circular motion of radius 𝑟 such that 𝐹𝑐 =
𝑚𝑣2

𝑟
…(5). In case of 

uniform circular motion of radius 𝑟, there would be equilibrium of forces. Hence, 𝐹𝑚 =

𝐹𝑐 ⇒ 𝑒𝑣𝐵 sin 𝜃 =
𝑚𝑣2

𝑟
⇒ 𝑟 =

𝑚𝑣

𝑒𝐵 sin 𝜃
…(6).  

Electrons emerging at Q have same kinetic energy 𝐾 and hence same speed 𝑣. Yet, possibility of slight diversion 

by an angle 𝜃 in the merging electrons is not ruled out.  Electro-mechanics of such electrons reaching R reveal a 

geometrical symmetry as shown in the figure. Yet, dependence of 𝐹𝑚 ∝ sin 𝜃 in (3) and radius of curvature of 

the arc described by the electrons 𝑟 ∝
1

sin 𝜃
 in (6) makes 𝑑 = 𝑄𝑅 independent of 𝜃. It is discussed in footnote to 

the illustration. Accordingly length of the chord would be 𝑄𝑅 = 2𝑟 sin 𝜃 ⇒ 𝑄𝑅 = 2 (
𝑚(√

2𝑒𝑉

𝑚
)

𝑒𝐵 sin 𝜃
) sin 𝜃. It leads to 

𝑄𝑅 = √
𝟖𝒎𝑽

𝒆𝑩𝟐 , is the answer. 

N.B.: Electro-mechanical analysis involved in the problem is of intresting relevance, and is being discussed. 

Change in momentum during time ∆𝑡 taken by deviated electron to describeng motion along the arc QR is  ∆𝑝 =

𝑚𝑣((sin 𝜃 𝑗̂ + cos 𝜃  𝑖̂) − (− sin 𝜃 𝑗̂ + cos 𝜃  𝑖̂)) ⇒ ∆𝑝 = 2𝑚𝑣 sin 𝜃 𝑗̂. Let then as per mechanics 
∆𝑝

∆𝑡
= 𝐹𝑚 ⇒

2𝑚𝑣

∆𝑡
sin 𝜃 = 𝑒𝑣𝐵 sin 𝜃 ⇒ ∆𝑡 =

2𝑚

𝑒𝐵
 …(7). It is seen that time taken to reach R by all electrons is independent of 

angle of diversion  

Electron, is describing circular motion with speed 𝑣 with a radius 𝑟 and time period of the circular motion is 𝑇 =

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦

𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
⇒ 𝑇 =

2𝜋𝑟

𝑣
. Using (6) it leads to 𝑇 =

2𝜋(
𝑚𝑣

𝑒𝐵 sin 𝜃
)

𝑣
⇒ 𝑇 =

2𝜋𝑚

𝑒𝐵 sin 𝜃
 . It leads to 

length of the arc QR is 
∆𝑡

𝑇
=

𝑃𝑄𝑎𝑟𝑐

2𝜋𝑟
⇒ 𝑄𝑅𝑎𝑟𝑐 = (

∆𝑡

𝑇
) 2𝜋𝑟 ⇒ 𝑄𝑅𝑎𝑟𝑐 = 2𝜋 (

2𝑚

𝑒𝐵
2𝜋𝑚

𝑒𝐵 sin 𝜃

) (
𝑚𝑣

𝑒𝐵 sin 𝜃
) . It solves into 



𝑄𝑅𝑎𝑟𝑐 = (
2𝑚𝑣

𝑒𝐵
). Accordingly length of the chord would be 𝑄𝑅 = 2𝑟 sin 𝜃 ⇒ 𝑄𝑅 = 2 (

𝑚(√
2𝑒𝑉

𝑚
)

𝑒𝐵 sin 𝜃
) sin 𝜃. It leads 

to 𝑄𝑅 = √
8𝑚𝑉

𝑒𝐵2 . 

Q-17 A proton projected in a magnetic field of 0.020 T travels along a helical path of radius 5.0 cm and pitch 20 cm. 

Find the component of the velocity of proton along and perpendicular to the magnetic field. Take mass of the 

proton = 1.6 × 10−27. 

A-17 𝟔. 𝟒 × 𝟏𝟎𝟐m/s and 𝟏. 𝟎 × 𝟏𝟎𝟑 m/s 

I-17 For convenience of analysis 3D unit vectorss are shown in the figure. Given is a proton having 

mass 𝑚 = 1.6 × 10−27kg and charge 𝑞 = 1.6 × 10−19 C. It is projected in magnetic field 𝐵⃗⃗ =

𝐵𝑏̂ ⇒ 𝐵⃗⃗ = 0.020𝑗.̂ Trajectory of the proton is helical with radius 𝑟 = 5.0 × 10−2m and pitch 

𝜆 = 2.0 × 10−1m. 

Let, the proton is projcted with a velocity 𝑣 making an angle 𝜃 with the magnetic field such that 

𝑣⃗ = 𝑣𝑗𝑗̂ + 𝑣𝑘𝑘̂ ⇒ 𝑣⃗ = 𝑣 cos 𝜃 𝑗̂ + 𝑣 sin 𝜃 𝑘̂…(1). 

A moving charge would experience magnetic force as per Lorentz’s 

Force Law, 𝐹⃗𝑚 = 𝑞𝑣⃗ × 𝐵⃗⃗…(2).  Here, 𝑛̂ → 𝑘̂  is vector perpendicular to 

plane of vectors 𝑣⃗ and 𝐵⃗⃗. The equation (2) essentially requires charge to 

be in motion and therefore 𝑣 ≠ 0. Therefore, combining (1) and (2) we 

have 𝐹⃗𝑚 = 𝑞𝑣𝐵(cos 𝜃 𝑗̂ + sin 𝜃 𝑘̂) × 𝑗̂ ⇒ 𝐹⃗𝑚 = 𝑞𝑣𝐵(cos 𝜃 𝑗̂ × 𝑗̂ +

sin 𝜃 𝑘̂ × 𝑗̂). It leads to 𝐹⃗𝑚 = 𝑞𝑣𝐵(0 + sin 𝜃 (−𝑖)̂)…(3). 

Analysis of (3) reveals that it is only velocity component 𝑣𝑘𝑘̂ =

𝑣 sin 𝜃 𝑘̂ which affects creates a 𝐹⃗𝑚 ⊥ 𝑣𝑘𝑘̂, force motion of the charge 

and thus qualifies for a uniform circular motion. While, 𝑣𝑗𝑗 ̂being along 

𝐵⃗⃗ does not affect motion of the charge. Thus, it leads to resultant motion of charge which is superimposition of 

translation motion on circular motion, eventually it is of helix form which a radius and a pitch. 

Therefore, both circular motion is being analyzed to determine radius of the helx. This radius will be used to 

determine time period of circular motion, which in turn will help to determine pitch of helix using translational 

motion of the particle. 

Circular Motion: Magnetic force 𝐹⃗𝑚is the cause of uniform circular motion, while centrifugal force 𝐹⃗𝑐 =
𝑚𝑣2

𝑟
𝑟̂…(4) is the reaction which creates an equilibrium of forces such that  𝐹⃗𝑚 + 𝐹⃗𝑐 = 0…(5), as per 

Newton’s Third Law of Motion. Thus, in accordance with Newton’s First Law of Motion its speed of 

rotation 𝑣  and radius 𝑟 of the circular trajectory remains constant.  

Comining (3), (4) and (5), 𝑞𝑣𝐵 sin 𝜃 (−𝑖)̂ +
𝑚(𝑣 sin 𝜃)2

𝑟
𝑟̂ = 0 ⇒ 𝑣 sin 𝜃 =

(5.0×10−2)(1.6×10−19)(0.020)

1.6×10−27  

…(6). It solves into  𝑣 sin 𝜃 = 𝟏. 𝟎 × 𝟏𝟎𝟑m/s is the velocity o the proton perpendicular the  the 

magntic field, is one part of the solution. 

The charge is since describing circular motion of radius 𝑟 with a uniform speed 𝑣, its time period is 𝑇 =
2𝜋𝑟

𝑣 sin 𝜃
 …(7). Hence, using available data 𝑇 =

2𝜋×(5.0×10−2)

(1.0×103)
⇒ 𝑇 = 3.14 × 10−4s…(8). 

Translational Motion: While describing circular motion the charged particle continues to traverse with 

translational velocity 𝑣𝑗𝑗̂ = 𝑣 cos 𝜃 𝑗̂ and traverses along 𝑗̂ a distance 𝜆 = 𝑣𝑗 × 𝑇 ⇒ 𝜆 = 𝑣 cos 𝜃 𝑇. 



Therefore, velocity of charge along the magnetic field is 𝑣 cos 𝜃 =
𝜆

𝑇
. Using the available data we have  

𝑣 cos 𝜃 =
2.0×10−1

3.14×10−4 ⇒ 𝑣 cos 𝜃 = 6.4 × 102m/s. 

Thus, answer is 𝟏. 𝟎 × 𝟏𝟎𝟑 m/s and 𝟔. 𝟒 × 𝟏𝟎𝟐m/s. 

Q-18 A rectangular coil of 100 turns has length 5 cm and width 4 cm. it is placed with its plane parallel to a uniform 

magnetic field and a current of 2 A is sent through the coil. Find the magnitude of the magnetic field 𝐵, if the 

torque acting on the coil is 0.2 Nm. 

A-18 0.5 T 

I-18 Given system is shown in the figure with 3D-unit vectors The coil has 100 torns 

of in rectangular shape having length 𝑙 = 5 × 10−2m and width 𝑤 = 4 × 10−2. 

The coil carries a current 𝐼 = 2 A. It is required to finf magnetic field B whereby 

the the coil exeriences a net torque 𝛤𝑛𝑒𝑡 = 0.2 Nm. 

A current carrying conductor placed in magnetic field, as [er Lorentz’s Force Law 

experiences magnetic force 𝐹⃗ = 𝐼𝑙 × 𝐵⃗⃗ ⇒ 𝐹⃗ = 𝐼𝑙𝐵 sin 𝜃 𝑛̂…(1). Here, 𝜃 is angle of 𝐵⃗⃗ w.r.t. 𝑙 and 𝑛̂ is unit 

direxction vector perpendicular to the plane containing vectors 𝑙 and 𝐵⃗⃗. It is to be noted that length vector is taken 

along the direction of the current in it. Accordingly for two opposite sides, 𝑙𝑎𝑏 = 𝑙𝑎𝑏𝑗 ̂while  𝑙𝑐𝑑 = 𝑙𝑐𝑑(−𝑗̂). Same 

principle is used for other two sides of the rectangular coil. 

Given is since a coil of  turns 𝑛 = 100 in shape abcd and hence to take n times the forces on each side of rectangle 

abcd, using (1). Accordingly forces – 

Side ab: 𝐹⃗𝑎𝑏 = 𝐼(𝑙𝑎𝑏𝑗̂) × (𝐵𝑗̂) ⇒ 𝐹⃗𝑎𝑏 = 𝐼𝑙𝑎𝑏𝐵(𝑗̂ × 𝑗̂) = 0, since 𝑗̂ × 𝑗̂ = 0. 

Side bc: 𝐹⃗𝑏𝑐 = 𝐼(𝑙𝑏𝑐𝑖)̂ × (𝐵𝑗̂) ⇒ 𝐹⃗𝑏𝑐 = 𝐼𝑙𝑏𝑐𝐵(𝑖̂ × 𝑗̂) ⇒ 𝐹⃗𝑏𝑐 = 𝐼𝑙𝑏𝑐𝐵(𝑘̂).. 

Side cd: 𝐹⃗𝑐𝑑 = 𝐼(𝑙𝑐𝑑(−𝑗̂)) × (𝐵𝑗̂) ⇒ 𝐹⃗𝑐𝑑 = −𝐼𝑙𝑐𝑑𝐵(𝑗̂ × 𝑗̂) = 0, since 𝑗̂ × 𝑗̂ = 0. 

Side da: 𝐹⃗𝑑𝑎 = 𝐼(𝑙𝑑𝑎(−𝑖)̂) × (𝐵𝑗̂) ⇒ 𝐹⃗𝑑𝑎 = −𝐼𝑙𝑑𝑎𝐵(𝑖̂ × 𝑗̂) ⇒ 𝐹⃗𝑑𝑎 = 𝐼𝑙𝑏𝑐𝐵(−𝑘̂). 

It is to be noted that while 𝐹⃗𝑎𝑏 and 𝐹⃗𝑐𝑑 the other two forces 𝐹⃗𝑏𝑐 and 𝐹⃗𝑑𝑎 are- 

(a) equal in magnitude 𝐹𝑏𝑐 = 𝐹𝑑𝑎 = 𝐼𝑙𝑏𝑐𝐵,  

(b) opposite directions 

(c) seperated by a distance equal to width of the coil 𝑤. 

(d) The above three are a valid case of a torque on the turn of the coil. 

Accordingly, torque on the couple 𝛤⃗ = 𝑤⃗⃗⃗ × 𝐹⃗ ⇒ 𝛤⃗ = 𝑙𝑎𝑏 × 𝐹⃗𝑏𝑐 ⇒ 𝛤⃗ = (𝑙𝑎𝑏𝑗̂) × (𝐼𝑙𝑏𝑐𝐵𝑘̂). It further solves to 

𝛤⃗ = 𝐼𝑙𝑎𝑏𝑙𝑏𝑐𝐵(𝑗̂ × 𝑘̂) ⇒ 𝛤⃗ = 𝐼𝐴𝐵𝑖.̂..(2). Here, 𝐴 = 𝐼𝑙𝑎𝑏𝑙𝑏𝑐…(3), is the area of turns of the coil. Given that the 

coil has 𝑛 turns of same area and hence net torque would be 𝛤⃗𝑛𝑒𝑡 = 𝑛𝛤⃗ ⇒ 𝛤⃗𝑛𝑒𝑡 = 𝑛𝐼𝐴𝐵𝑖̂ ⇒ 𝐵 =
𝛤𝑛𝑒𝑡

𝑛𝐼𝐴
…(4). Using 

the available data, 𝐵 =
0.2

100×2×((5×10−2)(4×10−2))
⇒ 𝑩 = 𝟎. 𝟓T is the answer. 

N.B.: Equation (2) can also be written as 𝛤⃗ = 𝐼𝐴𝐵𝑖̂ = 𝐼𝐴 × 𝐵⃗⃗ …(5). In this case 𝐴 = 𝐴𝑎̂ where unit vector 𝑎̂ is 

along perpendicular to the area A such that for observer if current in the loop is anti-clockwise then  𝑎̂ is (+)ve 

i.e. towards the observer. Whereas, if current in the loop is clockwise then  𝑎̂ is (-)ve i.e. away from the observer.  

In the instant case, as shown in the figure, when we observe the coil from the top current is clockwise and hence 

𝑎̂ = (−𝑘̂). Accordingly, 𝛤⃗ = 𝐼𝐴(−𝑘̂) × (𝐵𝑗̂) ⇒ 𝛤⃗ = 𝐼𝐴𝐵(−𝑘̂) × (𝑗̂) ⇒ 𝛤⃗ = 𝐼𝐴𝐵𝑖̂…(6). It is seen that 

conclusion at (6) conforms to (2), used to solvethe problem.  



Thus, equation (6) alongwith direction vector of area can be use as takeaway for handling problems involving 

torque experienced by a current carrying coil placed in uniform magnetic field. 

Q-19 Consider a solid sphere of radius 𝑟 and mass 𝑚 which has a charge 𝑞 distributed uniformly over its volume. The 

sphere is rotated about its diameter with an angular speed 𝜔. Show that the magnetic moment  and angular 

momentum 𝐿 of the plate are related as 𝜇 =
𝑞

2𝑚
𝐿. 

A-19 - 

I-19 Given is a non-conducting solid sphere of radius 𝑟 and mass 𝑚 carries a uniformly 

distributed charge 𝑞. The ring is rotated with an angular velocity 𝜔 about its axis Z-Z’ as 

shown in the figure. Thus charge density in the sphere is 𝜌 =
𝑞

4

3
𝜋𝑟3

⇒ 𝜌 =
3𝑞

4𝜋𝑟3…(1). 

Since current 𝑖 =
∆𝑄

∆𝑡
…(2). Since, angular speed of the disc is 𝜔 = 2𝜋𝑁 ⇒ 𝑁 =

𝜔

2𝜋
, here 

𝑁 is number revolutions per second. Therefore, time of one revolution of the disc is  𝑇 =
1

𝑁
⇒ 𝑇 =

2𝜋

𝜔
…(3). 

In time ∆𝑡 = 𝑇 the complete sphere passes through a  line PP’ parallel to ZZ’, axis of 

rotation and hence charge on the ring passes through the OP under consideration is ∆𝑄 =

𝑞. Accordingly, equivalent current in the ring is 𝑖 =
𝑞

2𝜋

𝜔

⇒ 𝑖 =
𝑞𝜔

2𝜋
…(4). 

We know that magnetic moment of a coil is 𝜇 = 𝑖𝐴…(5). Therefore, current due to distributed charge needs to 

be analyzed by decomposing the disc into elemental cylinders of radius 0 < 𝑥 < 𝑟 of radial thickness ∆𝑥 → 0.  

Here, 𝑥 = 𝑟 sin 𝜃 ⇒ ∆𝑥 = 𝑟 cos 𝜃 ∆𝜃…(6). 

Accordingly let us take an elemental cylinder of radius 0 < 𝑥 < 𝑟 of radial thickness ∆𝑥 → 0 and height ℎ =

2𝑟 cos 𝜃. Therefore, charge on the ring ∆𝑞 = (2𝜋𝑥∆𝑥 × ℎ)𝜌 ⇒ ∆𝑞 = (2𝜋𝑥∆𝑥 × 2𝑟 cos 𝜃) (
𝑞

4

3
𝜋𝑟3

). It leads to 

∆𝑞 =
3𝑞

𝑟2 cos 𝜃 (𝑟 sin 𝜃)(𝑟 cos 𝜃 ∆𝜃) ⇒ ∆𝑞 = 3𝑞 cos2 𝜃 sin 𝜃 ∆𝜃…(7). Let, cos 𝜃 = 𝑢 ⇒ − sin 𝜃 ∆𝜃 = ∆𝑢 

…(8). Combining (7) and (8), we get ∆𝑞 = −3𝑞𝑢2∆𝑢…(9). 

Combining (2), (3) and (9), current in the cylinder is ∆𝑖 =
∆𝑞

𝑇
⇒ ∆𝑖 =

−3𝑞𝑢2∆𝑢
2𝜋

𝜔

⇒ ∆𝑖 = −
3𝑞𝜔

2𝜋
𝑢2∆𝑢…(10). 

Therefore, as per (5) magnet moment of the elemental cylinder is ∆𝜇 = ∆𝑖𝐴 ⇒ ∆𝜇 = (−
3𝑞𝜔

2𝜋
𝑢2∆𝑢) (𝜋𝑥2) 

…(11).  

Combining (6) in (11), ∆𝜇 = (−
3𝑞𝜔

2
𝑢2∆𝑢) (𝑟2 sin2 𝜃) ⇒ ∆𝜇 = (−

3𝑞𝜔𝑟2

2
𝑢2∆𝑢) (1 − 𝑢2). It further solves into 

∆𝜇 =
3𝑞𝜔𝑟2

2
(𝑢4 − 𝑢2∆𝑢)∆𝑢…(12). Integrating (12), 𝜇 =

3𝑞𝜔𝑟2

2
(

𝑢5

5
−

𝑢3

3
)…(13). Reverting back to the variable 

𝑢 → cos 𝜃 and limits of 𝜃 = 0 to 𝜃 =
𝜋

2
 we get 𝜇 = −

3𝑞𝜔𝑟2

2
[

cos5 𝜃

5
−

cos3 𝜃

3
]

0

𝜋

2
. It, further, reduces to 

𝜇 =
3𝑞𝜔𝑟2

2
(− (

1

5
−

1

3
)) ⇒ 𝜇 =

3𝑞𝜔𝑟2

2
(

1

3
−

1

5
) =

3𝑞𝜔𝑟2

2
(

2

15
) ⇒ 𝜇 =

𝑞𝜔𝑟2

5
…(14) 

Angular momentum of a ring is 𝐿 = 𝐼𝜔, here moment of inertia of a sphere about its axis is 𝐼 =
2𝑚𝑟2

5
. Therefore, 

𝐿 =
2𝑚𝑟2𝜔

5
⇒ 𝜔𝑟2 =

5𝐿

2𝑚
…(15). Combining (14) and (15) we have 𝜇 = (

𝒒

𝟓
) (

𝟓𝑳

𝟐𝒎
) ⇒ 𝝁 =

𝒒

𝟐𝒎
𝑳, hence proved. 

N.B.: Non-conducting material has a property that at normal conditions charges remain at place and do not flow. 

Therefore, current is produced by charges distributed on non-conducting geometry only when the geometry 



changes its position. In this case geometry of non-conducting is a disc and displacement of charges is created by 

angular motion of the disc about its axis. This principle can be applied to any geometry of non-conducting 

material. 

 

N.B.: Complete set of Questions, Answers and their Illustrations are posted 
on the web along with Preamble 
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