LET US DO SOME PROBLEMS: XXXXI

Prof. SB Dhar

The Board Examinations of Class XII students are starting soon. Some important Questions are hereby selected for their practice and understanding the level of the Questions.

QUESTIONS

1. If $y=e^{\sin ^{-1} x}$ and $z=e^{-\cos ^{-1} x}$, prove that $\frac{d y}{d z}=e^{\frac{\pi}{2}}$.
2. Prove that the function $f(x)=x^{3}-6 x^{2}+12 x+5$ is increasing on R.
3. Using properties of determinants prove that:

$$
\left|\begin{array}{lll}
x & x\left(x^{2}+1\right) & x+1 \\
y & y\left(y^{2}+1\right) & y+1 \\
z & x\left(z^{2}+1\right) & z+1
\end{array}\right|=(x-y)(y-z)(z-x)(x+y+z)
$$

4. If $\sec ^{-1} x=\operatorname{cosec}^{-1} x$, show that $\frac{1}{x^{2}}+\frac{1}{y^{2}}=1$
5. Show that the function $f(x)=|x-4|, x \in R$ is continuous, but not differentiable at $x=4$.
6. If $f: R \rightarrow R, f(x)=x^{3}$ and $g: R \rightarrow R, g(x)=2 x^{2}+1$, and R is the set of real numbers, then find $f o g(x)$ and $g \circ f(x)$.

Ans. $8 x^{6}+12 x^{4}+6 x^{2}+1,2 x^{6}+1$
7. Solve: $\sin \left(2 \tan ^{-1} x\right)=1$.

Ans. $x=1$
8. Using determinants, find the values of k, if the area of triangle with vertices $(-2,0),(0,4)$ and $(0, k)$ is 4 square units.

Ans. $k=8$
9. Evaluate: $\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x$

Ans. $\tan x-x+C$
10. Using L Hospital's Rule, evaluate: $\lim _{x \rightarrow 0} \frac{8^{x}-4^{x}}{4 x}$

Ans. $\frac{1}{4} \log 2$
11. Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?

Ans. $\frac{7}{9}$
12. If events A and B are independent, such that $P(A)=\frac{3}{5}, P(B)=\frac{2}{3}$, find $P(A \cup B)$.

Ans. $\frac{1}{3}$
13. If $f: A \rightarrow A$ and $A=R-\left\{\frac{8}{5}\right\}$, show that the function $f(x)=\frac{8 x+3}{5 x-8}$ is one-one onto.

Hence, find f^{l}.
Ans. $f^{-1}(y)=\frac{8 y+3}{5 y-8}$ for all $y \in R-\left\{\frac{8}{5}\right\}$
14. Solve for $x: \tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$

Ans. $x= \pm \frac{1}{\sqrt{2}}$
15. A 13 m long ladder is leaning against a wall, touching the wall at a certain height from the ground level. The bottom of the ladder is pulled away from the wall, along the ground, at the rate of $2 \mathrm{~m} / \mathrm{s}$. How fast is the height on the wall decreasing when the foot of the ladder is 5 m away from the wall?

Ans. $-\frac{5}{6} \mathrm{~m} / \mathrm{sec}$
16. Evaluate: $\int \frac{x\left(1+x^{2}\right)}{1+x^{4}} d x$

Ans. $\frac{1}{2} \tan ^{-1} x^{2}+\frac{1}{4} \log \left|1+x^{4}\right|+C$
17. Evaluate: $\int_{-6}^{3}|x+3| d x$

Ans. $\frac{45}{2}$
18. Solve the differential equation: $\frac{d y}{d x}=\frac{x+y+2}{2(x+y)-1}$

Ans. $6 y-3 x-5 \log |3 x+3 y+1|=C$
19. Bag A contains 4 white balls and 3 black balls, while Bag B contains 3 white balls and 5
black balls. Two balls are drawn from Bag A and placed in Bag B. Then, what is the probability of drawing a white ball from Bag B?

Ans. $\frac{29}{70}$
20. Solve the following system of linear equations using matrix method:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=9$
$\frac{2}{x}+\frac{5}{y}+\frac{7}{z}=52$
$\frac{2}{x}+\frac{1}{y}-\frac{1}{z}=0$
Ans. $x=1, y=\frac{1}{3}, z=\frac{1}{5}$
21. The volume of a closed rectangular metal box with a square base is $4096 \mathrm{~cm}^{3}$. The cost of polishing the outer surface of the box is Rs. 4 per cm^{2}. Find the dimensions of the box for the minimum cost of polishing it.

Ans. $16 \mathrm{~cm} \times 16 \mathrm{~cm} \times 16 \mathrm{~cm}$

22. Find the point on the straight line $2 x+3 y=6$, which is closest to the origin.

Ans. $\left(\frac{12}{13}, \frac{18}{13}\right)$
23. Evaluate: $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$

Ans. $\boldsymbol{\pi}\left(\frac{\pi}{2}-1\right)$
24. Given three identical boxes A, B and C. Box A contains two gold and one silver coin. Box B contains one gold and two silver coins and Box C contains three silver coins. A person chooses a box at random and takes out a coin. If the coin is of silver, find the probability that it has been drawn from the Box which has the remaining two coins also of silver.

Ans. 0.5
25. If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a}+\vec{b}|=13$, and $|\vec{a}|=5$. Find the value of $|\vec{b}|$.

Ans. 12
26. If \vec{a} and \vec{b} are non-collinear vectors, find the value of x such that the vectors $\vec{\alpha}=(x-2) \vec{a}+\vec{b}$ and $\vec{\beta}=(3+2 x) \vec{a}-2 \vec{b}$ are collinear.

Ans. $x=\frac{1}{4}$
27. Find the equation of the plane passing through the intersection of the planes $2 x+2 y-3 z-7=0$, and $2 x+5 y+3 z-9=0$ such that the intercepts made by the resulting plane on the x-axis and the $z-$ axis are equal.

Ans. $12 x+27 y+12 z=52$
28. The following results were obtained with respect to two variables x and y : $\Sigma x=15, \Sigma y=25, \Sigma x y=83, \Sigma x^{2}=55, \Sigma y^{2}=135$, and $n=5$.
Find the regression coefficient $b_{x y}$. Also find the regression equation of x on y.
Ans. $b_{x y}=\frac{4}{5}, 5 x-4 y+5=0$

