LET US DO SOME PROBLEMS – XXXXII

Prof. SB Dhar

Some questions are selected here for the Aspirants who are preparing for the coming IIT-JEE Mains. These questions will help in understanding the standard of the questions.

QUESTIONS

Q1. If n is the number of	of the solutions of the	
equation		
$2\cos x \left(4\sin\left(\frac{\pi}{4}+x\right)s\right)$	$in\left(\frac{\pi}{4}-x\right)-1\right)=1, x\in$	
$[0, \pi]$ and <i>S</i> is the sum of all these solutions, then		
the ordered pair (n, S) is		
(a) $(3, 5\pi/3)$	(b) (2, 8π/9)	
(c) (3, 13π/9)	(d) $(2, 2\pi/3)$	
Ans.(c)		

Q2. cos ⁻¹ (cos(-	$(-5)) + sin^{-1}(sin(6)) - $
$tan^{-1}(tan(12))$ is	s equal to
(a)3π-11	(b) 3π+1
(c) 4π-11	(d) 4π-9
Ans.(c)	

Q3. Let $a_{1}, a_{2}, ..., a_{21}$ be an AP such that. If the sum of this AP is 189, then $a_{6}a_{16}$ is (a)57 (b)36 (c)48 (d)72 *Ans.* (d)

Q4. The range of the function

$$f(x) = \log_{\sqrt{5}} \left(3 + \cos\left(\frac{3\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right) - \cos\left(\frac{3\pi}{4} - x\right) \right)$$
is
(a)[-2,2] (b) $\left[\frac{1}{\sqrt{5}}, \sqrt{5}\right]$
(c) $\left(0, \sqrt{5}\right)$ (d)[0,2]
Ans. (d)

Q5. Let the acute angle bisector of the two planes x-2y-2z=-1 and 2x-3y-6z=-1 be the plane *P*. then which of the following points lies on *P*? (a)(0,2,-4) (b)(4,0,-2) (c)(-2.0,-1/2) (d)(3,1,-1/2)

Ans.(c)

Q6. The number of pairs (a,b) of real numbers, such that whenever is α a root of the equation $x^2+ax+b=0$, α^2-2 is also a root of this equation, is:

(a)6	(b)4
(c)8	(d)2
Ans.None of these	

Q7. Let f(x) be a polynomial of degree 3 such that $f(k) = -\frac{2}{k}$ for k=2,3,4,5. Then the value of 52 - 10 f(10) is equal to *Ans.26*

Q8. If the sum of the coefficients in the expansion of $(x+y)^n$ is 4096, then the greatest coefficient in the expansion is *Ans. 924*

Q9. A fair dice is tossed until six is obtained on it. Let X be the number of required tosses, then the conditional probability $P(X \ge 5| x>2)$ is (a)5/6 (b)25/36 (c)125/216 (d)11/36 *Ans.(b)*

Q10. Two fair dice are thrown. The numbers on them are taken as λ and μ , and a system of linear equations x+y+z=5, $x+2y+3z=\mu$, and $x+3y+\lambda z=1$ is constructed. If ρ is the probability that the system has a unique solution, q is the probability that the system has no solution, then (a)p=5/6, q=5/36(b)p=1/6, q=1/36 (c)p=1/6, q=5/36(d)p=5/6, q=1/36*Ans.(a)* Q11. The locus of the mid points of the chords of the hyperbola $x^2-y^2=4$, which touch the parabola $y^2=8x$, is (a) $y^3(x-2)=x^2$ (b) $y^2(x-2)=x^3$ (c) $x^3(x-2)=y^2$ (d) $x^2(x-2)=y^3$

Ans.(b)

Q12. The domain of the function $cosec^{-1}\left(\frac{1+x}{x}\right)$ is (a)(-1, -1/2] \cup (0, ∞) (b)[-1/2, ∞)-{0}

 $(c)[-1/2,0) \cup [1,\infty)$ $(d)(-1/2,\infty)-\{0\}$ Ans.(b)

Q13. If the value of the integral $\int_{0}^{5} \frac{x=[x]}{e^{x-[x]}} dx = \alpha e^{-1} + \beta$, where $\alpha, \beta \in \mathbb{R}$, $5\alpha+6\beta=0$ and [x] denotes the greatest interer less than or equal to x, then the value of $(\alpha+\beta)^2$ is equal to (a)16 (b)100 (c)25 (d)36

Ans.(c)

Q14. Let $A = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	0 1 0	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Then $A^{2025} - A^{2020}$ is
equal to		
(a) A^5		$(b)A^6$
$(c)A^{5}-A$		$(d)A^{6}-A$
Ans.(d)		

Q15. $\lim_{x \to 2} \left(\sum_{n=1}^{9} \frac{1}{n(n+1)} \right)^{1/2}$	$\frac{x}{1)x^2+2(2n+1(x+4))}$ is equal
to	
(a)9/44	(b)5/24
(c)7/36	(d)1/5
Ans.(a)	

Q16. Let $\lambda \neq 0$ be in *R*. If α and β are the roots of the equation $x^2 - x + 2\lambda = 0$; α , and γ are the roots of the equation $3x^2 - 10x + 27\lambda = 0$, then $(\beta\gamma/\lambda)$ is equal to *Ans.18*

Q17. The sum of all 3-digit numbers less than or equal to 500, that are formed without using the digit "1" and thay all are multiple of 11, is *Ans*.7744

Q18. Let the mean and variance fo four numbers 3,7, *x* and *y* (x > y) be 5 and 10 respectively. Then the mean of four numbers 3+2x, 7+2y, x+y and *x*-*y* is *Ans*.12