
                                                   

 

Electromagnetism: Electromagnetic Induction [Part 3- Set 4(a-02)] 

Typical Questions with Illustrations  

. 

Q-01 Two circular loops are placed coaxially but separated by a distance. A battery is suddenly connected to one 

of the loops establishing a current in it.  

(a) Will there be a current induced in the other loop?  

(b) If yes, when does the current start and when does it end?  

(c) Do the loops attract each other or do they repel? 

I-01 Given system of two loops, Loop-1(L1) and Loop 2 (L2) having centers 

C1 and C2 and resistance of the loops 𝑅1 and 𝑅2 respectively, are 

shown in the figure. L2 is closed while the L1 closes with a battery of 

emf 𝐸 and a switch. Initially the switch is open. At 𝑡 = 0 when switch 

closed, it will build a time-varying current 𝑖1𝑡 =
𝐸

𝑅
(1 − 𝑒−

𝑅

𝐿
𝑡)…(1), in 

the L1 starting from 𝑖10 = 0 → 𝑖1SS =
𝐸

𝑅
…(2). 

Current in L1 will produce time-varying magnetic field 𝐵𝑡 in space 

around it as per Bio-Savart-Ampere’s Law. Part of the magnetic field 

flux, due to L1, would create a flux linkage say 𝜙𝑡_21 with L2. Thus, answer to 

the part (a), is Yes. 

Graphical representation of current in (1) is called exponential rise of current with time as 

shown in the figure. But, current 𝒊𝟐−𝒕 induced in L2 is maximum at 𝒕 = 𝟎, in 

accordance with 
𝒅

𝒅𝒕
𝝓𝒕_𝟐𝟏 i.e. emf induced in L2 and proportionate current in it. But 

it decays with time, is answer of part (b). 

This 𝜙𝑡_21would induce a current 𝑖2𝑡 in L2,  which opposes increase in 𝜙𝑡_21 caused by current 𝑖1𝑡  in L1, as 

per (1). Thus, 𝑖2𝑡 would produce flux 𝜙𝑡_2 in L2. As per Lenz’s Law 𝜙𝑡_2 = −𝜙𝑡_21. 

It eventually leads to like poles that woiuld appears on the faces of both loop facing 

each other. It implies that if face of L1 towards L2 has South pole then face of L2 

towards L1 will also have South pole and vice versa. Thus, the loops would repel 

each other is the answer, is answer of part (c). 

Thus, answers are (a) Yes,   (b) Start with closing of switch and stops when current in L1 becomes 𝒊𝟏𝐒𝐒 

and (c) repel each other. 

Q-02 Two circular loops are placed coaxially but separated by a distance. A switch connected to the battery is closed 

till steady state is reached. The battery is suddenly disconnected by opening the switch.  

(a) Is a current induced in the other loop?  

(b) If yes, when does it start and when does it end?  

(c) Do the loops attract each other or repel? 

I-02 Given system of two loops, Loop-1(L1) and Loop 2 (L2) having centers C1 

and C2 and resistance of the loops 𝑅1 and 𝑅2 respectively, are shown in the 

figure. While, L2 is a closed loop, battery of emf 𝐸 in loop L1 is initially 

closed till steady state current in the loop is reached. At 𝑡 = 0 , when switch 

is opened, current in the loop L1 would start decaying  𝑖1𝑡 =
𝐸

𝑅
𝑒−

𝑅

𝐿
𝑡 starting 

from 𝑖10 =
𝐸

𝑅
 → 𝑖1SS = 0…(1). 



At 𝑡 = 0 current in L1 will produce a constant flux 𝜙1 and a part of it say 𝜙21, 

which is also constant would link L2. 

When switch is opened current in L1 tends to decay and so also flux would  𝜙1𝑡, 

and it becomes time variant. Since, 𝜙1𝑡 is decaying 
𝑑

𝑑𝑡
𝜙1_𝑡 → (−)ve. 

Thus, time varying flux linking L2 as 𝜙21_𝑡 → (−)ve, and induce emf in L2 in 

accordance with Faraday’s Law of Magnetic Induction. This emf in turn would 

induce current in L2 and consequent flux. Hence, answer to part (a) is Yes.  

Direction flux as per Lenz’s Law would be to oppose cause of changes; it implies that when rate of change of 

flux linking L1 is 
𝑑

𝑑𝑡
𝜙1_𝑡 → (−) ve, then rate of change of flux linking L2 will be    

𝑑

𝑑𝑡
𝜙2_𝑡 → (+)ve. This 

𝜙2_𝑡 is flux linking L2, and a part of it 𝜙12_𝑡would link L1. Thus, increase in 𝜙2_𝑡 and in turn 𝜙12_𝑡 would 

tend to compensate decrease in 𝜙1_𝑡. 

The above discussions about change of flux are linked to change of current, and so also direction of flux to 

direction of current as per Biot-Savart’s Law. Combining the effect of Farrday’s Law coupled with Biot-

Savarts Law, the current L2 starts with opening of the switch and decays with decay of the current in L1 

is the answer of Part (b). This effect is depicted in 𝑖 − 𝑡 graph, above. 

Direction polarity of magnetic field is related to direction of current in the loop, as shown in the figure. When 

L1, as seen from L2 carries clockwise current, polarity of L1 w.r.t L2 is  It is seen that, 

in first figure, direction of current is clockwise and in torn polarity of the coil seen 

from L2 is South. Flux produced by L2, which is trying to compensate decrease of flux 

in L1, must be of opposite polarity. Accordingly, direction of current produced in L2 

must be same as that in L1.  

It is analogues to two parallel conductors carrying unidirectional current. Such conductors experience force 

of attraction. Hence the loops would experience attraction, answer of part (c). 

Thus answers are – 

Part (a) -Yes 

Part (b) - Start with opening of the switch, and stops when current in L1 becomes 𝒁𝒆𝒓𝒐, 

Part (c) - The loops would attract each other is the answer. 

Q-03 If the magnetic field outside a copper box is suddenly changed, what happen to the magnetic field inside the 

box? Such low-resistivity metals are used to form enclosures which shield objects inside them against varying 

magnetic fields. 

I-03 Magnetic field outside a copper box intercepts surface area of the box. The Box can be conceived to be 

composed of concentric rings encircling the oncoming magnetic field. When magnetic field changes 

(𝐴 =
𝑑𝜙

𝑑𝑡
)…(1), suddenly. It produces (a) emf in the rings (Faraday’s First Law of Electromagnetic induction), 

(b) the magnitude of the emf proportional to the rate of change of flux (Faraday’s Second Law of 

Electromagnetic induction, say 𝐸 ∝ 𝐴), (c) The emf 𝐸 induced in the rings, by changing magnetic field, will 

establish current inversely proportional to the resistance of the rings as per Ohm’s Law. Accordingly, 𝐼 ∝
𝐴

𝑅
  , 

(d) Current 𝐼 induced in the rings will produce magnetic field 𝜙′ along the axis of the rings which is 

proportional to the current 𝐼 in the ring (Biot-Savart’s Law). These currents are called eddy currents. 

Accordingly, 𝜙′ ∝ 𝐼 ⇒ 𝜙′ ∝
𝐴

𝑅
  (e) Direction and nature of change of flux induced 𝜙′  would oppose the 

change in magnetic field 𝐴  as per Lenz’s Law. It leads to 
𝑑𝜙′

𝑑𝑡
∝ (−

1

𝑅
×

𝑑𝜙

𝑑𝑡
) ⇒

𝑑𝜙"

𝑑𝑡
= (−

𝐾

𝑅
×

𝑑𝜙

𝑑𝑡
), here 𝐾 is 

proportionality constant. 

Thus, effective flux changes 
𝑑𝜙"

𝑑𝑡
 in the space occupied by the metal box is 

𝑑𝜙"

𝑑𝑡
=

𝑑𝜙

𝑑𝑡
+

𝑑𝜙′

𝑑𝑡
⇒

𝑑𝜙"

𝑑𝑡
=

𝑑𝜙

𝑑𝑡
−

𝐾

𝑅
×

𝑑𝜙

𝑑𝑡
. It leads to 

𝑑𝜙"

𝑑𝑡
= (1 −

𝐾

𝑅
)

𝑑𝜙

𝑑𝑡
…(2). 



A close observation of (2) reveals that for copper which has low resistivity, being a good conductor, 𝑅 ≪. 

Therefore, the cancelling magnetic field 𝜙" is large. Accordingly, changing magnetic field is cancelled by the 

enclosure. Thus, inside the enclosure changes in magnetic field are not experienced, is the answer. 

Q-04 Metallic (non-ferromagnetic) and non-metallic particles in a solid waste may be separated as follows. The 

waste is allowed to slide down an incline over permanent magnets. The metallic particles slow down as 

compared to the nonmetallic ones and hence are separated. Discuss of eddy currents in the process. 

I-04 Metallic (non-ferromagnetic) and non-metallic particles in a solid waste when allowed to slide down an 

incline, over a magnetic field, an electromagnetic phenomenon, called eddy currents, occurs and is explained 

in steps-wise manner -  

(a) During siding on incline magnetic field intercepting particles changes due to change of distance from 

permanent magnet and surface area of the particles intercepting magnetic field. Change in surface 

area is due to change of angle of the surface of particle w.r.t. magnetic field; this change occurs to 

readjustment of position of the particle during slide. 

(b) Changes at (a) above lead to change of magnetic flux w.r.t. and can be expressed as 𝐴 =
𝑑𝜙

𝑑𝑡
…(1). 

(c) Magnetic field is intercepted by surface of metallic (non-magnetic) particles. This surface can be 

conceived to be composed of concentric rings encircling the oncoming magnetic field.  

(d) When magnetic field changes  at (1) produce  emf in the rings (Faraday’s First Law of Electromagnetic 

induction),  

(e) The magnitude of the induced emf is proportional to the rate of change of flux (Faraday’s Second 

Law of Electromagnetic induction, say 𝐸 ∝ 𝐴). 

(f) The emf 𝐸 , induced in the rings, will establish current inversely proportional to the resistance of the 

rings as per Ohm’s Law. Accordingly, 𝐼 ∝
𝐴

𝑅
 . 

(g) Current 𝐼 induced in the rings will produce magnetic field 𝜙′ along the axis of the rings which is 

proportional to the current 𝐼 in the ring (Biot-Savart’s Law). These currents are called eddy currents. 

Accordingly, 𝜙′ ∝ 𝐼 ⇒ 𝜙′ ∝
𝐴

𝑅
   

(h) Direction and nature of change of flux induced 𝜙′  would oppose the change in magnetic field 𝐴  as 

per Lenz’s Law. It leads to 
𝑑𝜙′

𝑑𝑡
∝ (−

1

𝑅
×

𝑑𝜙

𝑑𝑡
) ⇒

𝑑𝜙"

𝑑𝑡
= (−

𝐾

𝑅
×

𝑑𝜙

𝑑𝑡
), here 𝐾 is proportionality 

constant. 

(i) Thus, effective flux changes 
𝑑𝜙"

𝑑𝑡
 in the space occupied by the metal box is 

𝑑𝜙"

𝑑𝑡
=

𝑑𝜙

𝑑𝑡
+

𝑑𝜙′

𝑑𝑡
⇒

𝑑𝜙"

𝑑𝑡
=

𝑑𝜙

𝑑𝑡
−

𝐾

𝑅
×

𝑑𝜙

𝑑𝑡
. It leads to 

𝑑𝜙"

𝑑𝑡
= (1 −

𝐾

𝑅
)

𝑑𝜙

𝑑𝑡
…(2). 

A close observation  of the above process which culminates into (2) reveals that linking for metallic (non-

magnetic particles) electromagnetic coupling is strong since 𝑹 ≪. It leads to electromagnetic retardation 

of such particles which overcomes gravitational acceleration such particles while the waste slides down a 

slope. 

While, non-metallic particles also undergo the same process, but the electromagnetic coupling in (2) is 

low due the fact that these particles having 𝑹 ≫. 

Q-05 A pivoted aluminum bar falls much more slowly through a region containing magnetic field than a similar bar 

of an insulating material. Explain. 

I-05 Given are two bars, one of aluminum and the other is of insulated; they are pivoted. They fall through a region 

where magnetic field exists. It is a free fall under gravity. Therefore, velocity of fall for both would though be 

the same, yet the downward velocities would change with time (in accordance with the first equation of 

motion) i.e. 𝑣 = −𝑔𝑡…(1). Accordingly, the rate at which the rods would intercept magnetic field, 𝐴 =
𝑑𝜙

𝑑𝑡
⇒

𝐴 ∝
𝑑(𝑔𝑡)

𝑑𝑡
⇒ 𝐴 ∝ 𝑔…(2).  

These two rods would experience an electromagnetic induction and is explained in steps-wise manner -  



(a) Surface of the rods can be conceived to be composed of concentric rings encircling the oncoming 

magnetic field.  

(b) When magnetic field changes as per (2), it produces an emf in the rings (Faraday’s First Law of 

Electromagnetic induction),  

(c) The magnitude of the induced emf is proportional to the rate of change of flux (Faraday’s Second 

Law of Electromagnetic induction, say 𝐸 ∝ 𝐴 ⇒ 𝐸 ∝ 𝑔…(3) 

(d) The emf 𝐸 , induced in the rings, will establish current inversely proportional to the resistance of the 

rings as per Ohm’s Law. Accordingly, 𝐼 ∝
𝐴

𝑅
 ⇒  𝐼 ∝

𝑔

𝑅
 …(4) 

(e) Current 𝐼 induced in the rings will produce magnetic field 𝜙′ along the axis of the rings which is 

proportional to the current 𝐼 in the ring (Biot-Savart’s Law). These currents are called eddy currents. 

Accordingly, 𝜙′ ∝ 𝐼 ⇒ 𝜙′ ∝
𝑔

𝑅
 …(5). 

(f) Direction and nature of change of flux induced 𝜙′  would oppose the change in magnetic field 𝐴  as 

per Lenz’s Law. It leads to 
𝑑𝜙′

𝑑𝑡
∝ (−)

𝑔

𝑅
⇒

𝑑𝜙"

𝑑𝑡
= (−

𝑘𝑔

𝑅
),..^) 

(g) Thus, effective flux changes 
𝑑𝜙"

𝑑𝑡
 in the space occupied by the metal box is 

𝑑𝜙"

𝑑𝑡
=

𝑑𝜙

𝑑𝑡
+

𝑑𝜙′

𝑑𝑡
⇒

𝑑𝜙"

𝑑𝑡
=

𝑔 −
𝑘𝑔

𝑅
. It leads to 

𝑑𝜙"

𝑑𝑡
= (1 −

𝐾

𝑅
) 𝑔…(7). 

A close observation  of the above process which culminates into (7) reveals that electromagnetic coupling 

in aluminum rod is strong since 𝑹 ≪. It leads to electromagnetic retardation of such particles which 

overcomes gravitational acceleration experienced by it. 

While, insulating rod also undergo the same process, but the electromagnetic coupling in (7) is not there. 

It is attributed to the fact that resistance of insulating material  𝑹 → ∞. 

Q-06 A metallic bob A oscillates through the space between the poles of an electromagnet, as shown 

in the figure. The oscillations are more quickly damped when the circuit is on, as compared to 

the case when the circuit is off. Explain 

I-06 The oscillating bob experiences a simple harmonic motion 𝑣 = 𝑉 cos 𝜃…(1). Here, 𝜃 a is 

angular displacement of the bob from mean position. Thus, the velocity of the bob is 

maximum when  bob is in the mean position i.e. 𝜃 = 0.  

The bob is given to be metallic and hence when the bob passes through the poles it intercepts 

magnetic field between the poles at velocity which is changing with angular displacement 

as per (1). This motion would induce eddy currents on the surface of the bob and thus loos 

of kinetic energy of the bob in the form of heat energy. This loss of energy would create a marginal damping 

of the oscillating bob when the circuit is off. It implies that ends of the coil of the electromagnet are open. 

Given that when circuit is on, implying that ends of the coil of the electromagnet are short-

circuited as shown in the figure, the eddy currents induced in bob would interact with 

magnetic field of the electromagnet. This interaction would be counterproductive to 

magnetic field of the electromagnet in accordance with the Lenz’s Law. Thus, changes in 

the magnetic field of the electromagnet would produce an emf 𝐸 in coil as per Faraday’s 

Laws of electromagnetic induction. This induced emf will cause flow of current 𝐸 through 

the closed circuit as per Ohm’s Law. Every circuits has some resistance say 𝑟. Thus, it will convert electrical 

energy 𝑈 into heat energy 𝐻 =
𝐸2

𝑟
 as per Joule’s Law. The electrical energy 𝑈 is derived from kinetic energy 

of the bob. 

Thus, when the circuit is closed there is additional conversion of kinetic energy of the bob and it leads 

to quick damping. 

Q-07 Two circular loops are placed with their centers separated by a fixed distance. How would you orient the loops 

to have – 



(a) the largest mutual inductance  

(b) the smallest mutual inductance 

I-07 Given are two circular loops L1 and L2 separated by a distance with their 

centers C1 and C2 respectively. When current say 𝑖 flows through the loop 

L1, applying Bio-Savart’s Law magnetic flux 𝜙1 would be linking the loop 

can be determined. The flux 𝜙1 ∝ 𝑖...(1). The proportionality constant in (1) 

is related to geometry of the loop. 

The loop  L2 is since separated the flux produced by L1 that would link the 

loop L2 is  𝜙21; it is dependent upon - 

(a) geometry of  L2 and its angular 

position w.r.t. L1. Accordingly, 𝜙21 ∝
 𝜙1 cos 𝜃…(2), here 𝜃 is the angle between the planes of the two loops. 

Combining (1) and (2), 𝜙21 ∝ 𝑖 cos 𝜃…(3). Therefore, emf induced in 

L2, as per Faraday’s Law of Electromagnetic Induction,  due to change 

of current in L1 is 𝑒21 ∝ (−)
𝑑𝜙21

𝑑𝑡
 …(4). Combining (3) and (4), 𝑒21 ∝

 (cos 𝜃
𝑑𝑖

𝑑𝑡
)…(5). This equation can be expressed as 𝑒21 = 𝑀

𝑑𝑖

𝑑𝑡
 …(6). In 

this,  𝑀 = 𝐾 cos 𝜃…(7), is called mutual inductance of the two loops. In 

M coefficient cos 𝜃 is implicit.  

Given systems are shown in Fig 1 and Fig 2 having, having surfaces of the loop parallel and perpendicular to 

each other. in Fig. 2, where the loops are parallel the angle 𝜃 = 00 ⇒ cos 𝜃 = 1…(8). Accordingly, combining 

(7) and (8) , we have 𝑀1 = 𝐾…(9). Whereas, in Fig. 2, where the loops are perpendicular to each other 𝜃 =
900 ⇒ cos 𝜃 = 0 …(10). Therefore, combining (7) and (10), 𝑀2 = 0…(11). 

Observing (9) and (11), mutual inductance of the loops is largest when loops are  oriented parallel, 

answer of part (a);  and smallest when loops are oriented perpendicular to each other, answer of part 

(b). 

Q-08 Consider the self-inductance per unit length of a solenoid at the center and that near its ends. Which of the 

two is greater? 

I-08 Electric current flowing through a solenoid produces magnetic field as shown in the 

figure. A close observation of magnetic lines of force reveal that they are parallel at the 

center of the solenoid and undergo fringing at the ends of the solenoid. Thus all magnetic 

lines of force (flux) produced by the solenoid link to its turns at the center of the solenoid. 

Whereas, linking of flux to turns of the solenoid near its ends is lesser. 

Let, 𝜙𝑘  is the flux linking kth turn when current 𝑖 is flowing through the solenoid. 

magnetic flux 𝜙1. The flux produced by the solenoid and that linking turn of the solenoid can be determined 

applying Bio-Savart’s Law. It is seen that the 𝜙𝑘 ∝ 𝑖...(1). The proportionality constant in (1) is related to (a) 

geometry of the solenoid and (b) position of the turn in the solenoid, as shown in the above diagram. 

Therefore, emf induced in a turn of a coil due to current in it as per Faraday’s Law of Electromagnetic 

Induction, is 𝑒 ∝ (−)
𝑑𝜙

𝑑𝑡
⇒ 𝑒 ∝ (−)

𝑑𝑖

𝑑𝑡
⇒ 𝑒𝑘 = 𝐾𝑘

𝑑𝑖

𝑑𝑡
 …(2).  

Equation (2) is expressed as 𝑒𝑘 = 𝐿𝑘
𝑑𝑖

𝑑𝑡
, where is called self-inductance of the kth turn. 

Based on discussion and the diagram shown above, since flux linking turn in the center of the solenoid, due 

to current 𝑖flowing through the solenoid is greater than the turns nearing the end of the solenoid. Hence, self-

inductance of turn  𝑳𝒌 for turn of the solenoid in the center of the coil is greater. 

Q-09 Consider the energy density in a solenoid at its center and that near its ends. Which of the two is greater? 

I-09 Solenoid stores energy in the form of magnetic field. Solenoid stores magnetic energy when current flows 

through. Accordingly, energy density of a solenoid is quantified as magnetic energy per unit volume.  



It is seen that when current flows through a wire, it produces magnetic field around itself. The wire is when 

bend to form a series of loops, it is called solenoid. A conceptual view of magnetic field 

produced by a solenoid is shown in the figure. A close observation of magnetic lines of 

force reveal that they are parallel at the center of the solenoid and undergo fringing at 

the ends of the solenoid. Thus all magnetic lines of force (flux) produced by the 

solenoid link to its turns at the center of the solenoid. Whereas, linking of flux to turns 

of the solenoid near its ends is lesser. 

Let, 𝜙𝑘  is the flux linking kth turn when current 𝑖 is flowing through the solenoid. 

Magnetic flux 𝜙1. The flux produced by the solenoid and that linking turn of the solenoid can be determined 

applying Bio-Savart’s Law. It is seen that the 𝜙𝑘 ∝ 𝑖…(1). The proportionality constant in (1) is related to (a) 

geometry of the solenoid and (b) position of the turn in the solenoid, as shown in the above diagram. 

Therefore, emf induced in a turn of a coil due to current in it as per Faraday’s Law of Electromagnetic 

Induction, is 𝑒 ∝ (−)
𝑑𝜙

𝑑𝑡
⇒ 𝑒 ∝ (−)

𝑑𝑖

𝑑𝑡
⇒ 𝑒𝑘 = 𝐾𝑘

𝑑𝑖

𝑑𝑡
 …(2).  

Equation (2) is expressed as 𝑒𝑘 = 𝐿𝑘
𝑑𝑖

𝑑𝑡
…(3), where is called self-inductance of the kth turn. Here, 𝐿𝑘 depends 

upon geometry and position of the turn in the solenoid. The 𝑳𝒌 is maximum of the turns at the center of the 

solenoid. 

Instantaneous energy of the magnetic field associated with the kth turn is 𝑈𝑘𝑡 = 𝑒𝑘𝑖 ⇒ 𝑈𝑘𝑡 = (𝐿𝑘
𝑑𝑖

𝑑𝑡
) 𝑖. This 

can be written as 𝑈𝑘𝑡 = 𝐿𝑘 (𝑖
𝑑𝑖

𝑑𝑡
) ⇒ 𝑈𝑘𝑡𝑑𝑡 = 𝐿𝑘𝑖𝑑𝑖. Thus, total energy stored in the turn of the solenoid is 

𝑈𝑘𝑡 = ∫ 𝑈𝑘𝑡𝑑𝑡 ⇒ 𝑈𝑘 = 𝐿𝑘 ∫ 𝑖𝑑𝑖 ⇒ 𝑈𝑘 = 𝐿𝑘 (
1

2
𝑖2) ⇒ 𝑈𝑘 =

1

2
𝐿𝑘𝑖2. Since each turn of the solenoid has same 

width and same cross-sectional area. Therefore, volume of each turn is also constant say 𝑉. Therefore, energy 

density of kth turn, when current 𝑖 is flowing through the solenoid is 𝜎𝑘 =
𝑈𝑘𝑡

𝑉
⇒ 𝜎𝑘 =

1

2
𝐿𝑘𝑖2

𝑉
⇒ 𝜎𝑘 = (

𝑖2

2𝑉
) 𝐿𝑘 

…(3) 

Analyzing (3) in context of the discussion on inductance of kth turn of the solenoid is greater at the center. 

Therefore, energy density of the turns in the center of the solenoid is greater. 

 

—00— 


