Let Us Do Some Problems-XXXXIII

Prof. SB Dhar

Some questions from the papers of entrance examinations for the admission to the undergraduate courses in Mathematics.

Q1. Define $a_{n}=\left(1^{2}+2^{2}+\cdots+n^{2}\right)^{n}$ and $b_{n}=n^{n}(n!)^{2}$. Recall $n!$ is the product of the first n natural numbers. Then
(a) $a_{n}<b_{n}$ for all $n>1$
(b) $a_{n}>b_{n}$ for all $n>1$
(c) $a_{n}=b_{n}$ for infinitely many n
(d) none of the above

Ans.(b)

Q2. The last digit of $(2004)^{5}$ is
(a) 4
(b) 8
(c) 6
(d) 2

Ans.(a)

Q3. If n is positive integer such that $8 n+1$ is a perfect square, then
(a) n must be odd
(b) n cannot be a perfect square
(c) $2 n$ cannot be a perfect square
(d)none of the above

Ans.(c)

Q4. The coefficient of $a^{3} b^{4} c^{5}$ in the expansion of $(b c+c a+a b)^{6}$ is
(a) $\frac{12!}{3!4!5!}$
(b) $\frac{6!}{3!}$
(c) 33
(d) $3 \cdot \frac{6!}{3!3!}$

Ans.(d)

Q5. If $\log _{10}(x)=10^{\log _{10}}{ }^{4}$, then x equals to

$$
\begin{aligned}
& \text { (a) } 4^{10} \\
& \text { (b) } 100
\end{aligned}
$$

(c) $\log _{10} 4$
(d)none of the above

Ans.(b)
Q6. The set of all real numbers x such that $x^{3}(x+1)(x-2) \geq 0$ is
(a)the interval $2 \leq x<\infty$
(b)the interval $0 \leq x<\infty$
(c)the interval $-1 \leq x<\infty$
(d)none of the above

Ans.(d)

Q7. Let z be a non-zero complex number such that $\frac{z}{1+z}$ is purely imaginary then
(a) z is neither real nor purely imaginary
(b) z is real
(c) z is purely imaginary
(d) none of the above

Ans.(a)

Q8. In the interval $(0,2 \pi)$, the function $\sin \left(\frac{1}{x^{3}}\right)$
(a) never changes sign
(b)changes sign only once
(c) changes sign more than once, but finitely many times
(d) changes sign infinitely many times

Ans.(d)

Q9. $\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right) \tan ^{2} x}{x^{3}}$
(a)does not exist
(b)exists and equals 0
(c)exists and equals $2 / 3$
(d)exists and equals 1

Ans.(d)

Q10. If $f(x)=\cos (x)-1+\frac{x^{2}}{2}$, then
(a) $f(x)$ is an increasing function on the real line (b) $f(x)$ is a decreasing function on the real line
(c) $f(x)$ is increasing on the interval $-\infty<\mathrm{x} \leq 0$ and decreasing on the interval $0 \leq x<\infty$
(d) $f(x)$ is decreasing on the interval $-\infty<x \leq 0$ and increasing on the interval $0 \leq x<\infty$
Ans.(d)

Q11. The number of roots of the equation $x^{2}+\sin 2 x=1$ in the closed interval $[0, \pi / 2]$ is
(a) 0
(b) 1
(c) 2
(d) 3

Ans.(b)

Q12. The number of maps f from the set $\{1,2,3\}$ into the set $\{1,2,3,4,5\}$ such that $f(i) \leq f(j)$ whenever $i<j$ is
(a) 60
(b)50
(c) 35
(d) 30

Ans. (c)

Q13. The digits in the unit place of the number $1!+2!+3!+\ldots .+99$! is
(a) 3
(b) 0
(c)1
(d) 7

Ans.(a)

Q14. The equation $x^{3} y+x y^{3}+x y=0$ represents
(a)a circle
(b)a circle and a pair of straight lines
(c)a rectangular hyperbola
(d)a pair of straight lines

Ans.(d)

Q15. For real numbers x, y and z, show that
$|x|+|y|+|z| \leq|x+y-z|+|y+z-x|$ $+|z+x-y|$

Q16. How many real roots does $x^{4}+12 x-5$ have?

Ans. 2

Q17. Consider the 2×2 matrix
$M=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) \in M_{2}(R)$.
It the eighth power of M satisfies
$M^{8}\binom{1}{0}=\binom{x}{y}$, then find the value of x .

Q18. Let T denote the sum of the convergent series
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots .+\frac{(-1)^{n+1}}{n}+\cdots$
And let S denote the sum of the convergent series

$$
\begin{gathered}
1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\cdots \\
=\sum_{n=1}^{\infty} a_{n}
\end{gathered}
$$

Where $a_{2 m-2}=\frac{1}{2 m-1}, a_{2 m-1}=\frac{-1}{4 m-2}$ and $a_{2 m}=\frac{-1}{4 m}$ for $\mathrm{m} \in N$, then find the relation between T and S.

Q19. Find the value of $\lim _{n \rightarrow \infty} \sum_{k=2}^{n} \frac{\sqrt{n+1}-\sqrt{n}}{k(\ln k)^{2}}$

